US006493347B2

a2 United States Patent

Sindhu et al.

US 6,493,347 B2
*Dec. 10, 2002

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(*)

ey
(22)
(65)

(63)

G

(>2)

MEMORY ORGANIZATION IN A
SWITCHING DEVICE

Inventors: Pradeep S. Sindhu; Dennis C.
Ferguson, both of Mountain View;
Bjorn O. Liencres, Palo Alto; Nalini
Agarwal, Sunnyvale; Hann-Hwan Ju,
San Jose; Raymond Marcelino Manese
Lim, Mountain View; Rasoul
Mirzazadeh Oskouy, Fremont;
Sreeram Veeragandham, Sunnyvale,
all of CA (US)

Juniper Networks, Inc., Sunnyvale,
CA (US)

Assignee:

Notice: This patent issued on a continued pros-
ecution application filed under 37 CFR
1.53(d), and is subject to the twenty year
patent term provisions of 35 U.S.C.

154(a)(2).

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

08/901,061

Jul. 24, 1997

Prior Publication Data

Appl. No.:
Filed:

US 2001/0010692 Al Aug. 2, 2001
Related U.S. Application Data

Continuation-in-part of application No. 08/844,171, filed on
Apr. 18, 1997, now Pat. No. 5,905,725, which is a continu-
ation-in-part of application No. 08/767,576, filed on Dec.
16, 1996, now Pat. No. 5,909,440.

(58) Field of Search 370/395, 389,
370/396, 397, 351, 352, 354, 355, 428,

412, 429, 413, 414-418, 442, 368, 363,

353, 398, 395.1, 395.31, 395.53, 395.6,

395.61, 395.64, 395.65, 395.7, 395.71,

399, 401, 475; 340/825.01, 825.03

(56) References Cited
U.S. PATENT DOCUMENTS
4,058,672 A 11/1977 Crager et al.
4,596,010 A 6/1988 Beckner et al.

(List continued on next page.)
OTHER PUBLICATIONS

Arpaci, Multu, Copeland, John A., Buffer Management For
Shared—-Memory ATM Switches, IEEE Communications
Surveys & Tutorialsl, First Quarter 2000, pp. 2-10, vol. 3
No. 1.

Verma, Sanjeev, ATM Switch Architectures, A Report in The
Department of Electrical and Computer Engineering, Con-
cordia University, Montreal, Quebec, Canada, Aug. 1994,
pp. 1-81.

Primary Examiner—Dang Ton
(&) ABSTRACT

A router for switching data packets from a source to a
destination in a network in which the router includes a
distributed memory. The distributed memory includes two or
more memory banks. Each memory bank is used for storing
uniform portions of a data packet received from a source and
linking information for each data packet to allow for the
extraction of the uniform portions of a data packet from
distributed locations in memory in proper order after a
routing determination has been made by the router.

18 Claims, 22 Drawing Sheets

Int. CL7 oo HO041. 12/56
US.Cl .o 370/401; 370/395.1; 370/389
109
20-\
106
KEY CONTROLLER

RLE

NOTIFICATION

INPUT 110
SECTION

150-0

104

QUTPUT
SECTION

150-0

INPUT
SECTION

150-1

OUTPUT
SECTION

150-1

MEMORY
MEMORY
INPUT OUTPUT
SECTION 1900~ MEMORY BANK 0 SEoTONS SECTION
-1 ~[MEMORY BANK 1 FUNCTION -
1502 g 150-2
;gz i ~JmEmoRY BaNK 2}/ 10°| PORTS
““™{MEMORY BANK 3 QUTPUT

INPUT
SECTION

150-3

SECTION
150-3

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

US 6,493,347 B2

Page 2
U.S. PATENT DOCUMENTS 5,457,687 A 10/1995 Newman 370/85.3
5,491,694 A 2/1996 Oliver et al. 370/85.4

4,884,264 A 11/1989 Servel et al. 5521910 A 5/1996 Matthewscc.co...... 370/54
4,885,744 A 12/1989 Lespagnol et al. 5,796,944 A 8/1998 Hill et al.
4,926,416 A 5/1990 Weik 5,802,052 A 9/1998 Venkataraman
4,933,932 A 6/1990 Quinquis et al. 5,905,725 A * 5/1999 Sindhu et al. 370/389
4,947,388 A 8/1990 Kuwahara et al. 5009440 A * 6/1999 Ferguson et al. 370/408
5,214,639 A 5/1993 Herion
5,448,702 A 9/1995 Garcia et al. 395/325 * cited by examiner

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

U.S. Patent

Dec. 10, 2002 Sheet 1 of 22 US 6,493,347 B2
INPUT 2 8
< > | QUTPUT
PORT PORT
6
MEMORY
8
<2 >
ISSI%T SWITCHING OUTPUT
DEVICE PORT
MEMORY
N\ 4
’/2/ \
INPUT
R
/>
MEMORY | FIG._1A 8
(PRIOR ART)
2 8 OUTPUT
neut |+ > | Rk
6 MEMORY
2
neut | <7 8~ | OUTPUT
PORT SWITCHING PORT
DEVICE o
MEMORY N J MEMORY
4
[2
° 8 ~a
WPUT OUTPUT
PORT PORT
VEMORY I ¢ FIG._1B 9 ~JMEMORY

(PRIOR ART)

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

U.S. Patent Dec. 10, 2002 Sheet 2 of 22 US 6,493,347 B2

5 5
= =
< <
(| E (1 &
| o 8| 9
41}
a) (]
o
W
A5
0
Q| &
o <
e N
[l 3]
N &
Tl ™
(2t
!
1 3
S| =
zZ
o
S <
3 [l E
o| O ol O
- 0 C')EJ

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

US 6,493,347 B2

PV

Sheet 3 of 22

Dec. 10, 2002

U.S. Patent

€051~

NOILO3S
1Nd1no

051~

c0l

NOILO3S
1Ndino

L-051 ~

NOILO3S
1Ndino

0-061 ~

NOILO3S
1Nd1no

6051
) NOILO3S
€ INVE AHONAWK_ .o, o 1NN
sibod | cordAZONVE RHONAWN ~ o - o
J_m_mwczuﬁw_ LINVE AJOWIN .| . \
A 0 ANVE AHOWAN_ g NOLLOZS
AHOWIW \
- - 1
AHOWIW v 101
S ../ NOILO3S
\~p0} LNdNI
\.Q-th
NOILO3S
Ot 1NdNI
374
NOILVDIILON HITIOHINOD | A3M
N
X0z
~-601

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

U.S. Patent Dec. 10, 2002 Sheet 4 of 22 US 6,493,347 B2

INPUT
SWITCH 150
305~ 100 280 o
-1 *
316 [} ¥— 304 308
‘Q 306 ?’—
HEAD
OUTPUT AND
| REQUEST | | TAL
PROCESSOR [*—™ QUEUE
BUFFER
OUTPUT
SWITCH
102 MEMORY
P
< y
»| BUFFER }—» >
) LINE
——————— -— 374 OUTPUT
[
300 |
LINE I 300
INPUT |
—] " DATA :
HANDLER fw, -
— T 270
| x "~
N L
|
INPUT :
SWITCH GLOBAL |
v |
> <
s04 P> | (MEMORY !
L BANK) !
> |
) NOTIFICATION | !
‘ 319 ~ AREA :
|
l

\ "

FIG._3A 2

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

U.S. Patent Dec. 10, 2002 Sheet 5 of 22 US 6,493,347 B2

100\

B, [CELLS TOA,

-l

106\

102\

L FIG..3B

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

U.S. Patent Dec. 10, 2002

Sheet 6 of 22

US 6,493,347 B2

L 352

6/22
356 358 360
350\ \ \ \ <
TYPE STREAM PACKET HEADER
366
N\ OUTPUT PORT ID ADDRESS 368
354~ cELL DATA
150-0~| B, T, : T,
! [
| |
|
|
|
I
150-1 | |
~ 450 450
| \
B, | ! &
| |
| |
|]
| [
| s
| u
150-2 | 450 | 450 INPUT SWITCH
™ B, : f | I[r%
| u
| |
| |
I |
| !
| |
1 |
l |
| |
|
]
|

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

U.S. Patent Dec. 10, 2002 Sheet 7 of 22 US 6,493,347 B2

CONTROLLER |~ %6 100
: \.512
505
~
010 PROCESSOR 7 | s020
2 ROUND ROBIN [INDIRECT 040" | <
DATA HANDLER CELL -
<« MEMORY
501-1 1] | 502-1
: 514 570 504-1 4 ;
- /-
KEY >
501-2- READING INDIRECT /1:] (5022
ENGINE PRO%[;:ELSLSOR 504-2
. | 516 .
° KEY ®
BUFFER 508
/"
[®
501-7 1 -515 1
- RESERVA- 502-7
2 - TION 504-7 / N
LINKING TABLE
ENGINE
A
L 517
READ CONTROLLER |

\ \ \ [] ® L] \
506-0° 506-1-° 506-2 506-7

. J
Y

READ REQUEST INPUTS
FlG 5A FROM MULTI-FUNCTION
. — MULTIPORTS 150

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

US 6,493,347 B2

Sheet 8 of 22

Dec. 10, 2002

U.S. Patent

£-051

S01

g5 "9Old

2-051
N

501
8
Tomh\Aﬂ W
S04

_ /N-o?
|
_
| _
| |
| “ |
_ |
_ _ _ *
I ! _
| “ _
. . _
_ wwm\v “ z-05% 5 |
} } mm ./
“ — _ — “ Z-051
| _ _
| _ |
! _ |
| " _
I . _
| hmmv _ omv | F
“ “ _ g9
_ _ w /TQ&
_ " |
*
005" “ _
505 |
_
HOLIMS 1NdNI |
%
001 0
/o-oﬁ

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

U.S. Patent Dec. 10, 2002 Sheet 9 of 22 US 6,493,347 B2

600
\

608 602 604 606 606 606 606
(™ [4 - L L

1| KEY AD%L,%SS OFFSETO | OFFSET1 | OFFSET2 | OFFSET 3

FIG._6

700
~ 702 '/
/D 704-0 704-1 704-2
704-2 704-3 704-4
704-5 704-6 704-7
704-7 704-8 704-9
® ® []
[] ® [J
® ® []
704-(N-1) 704-N 706
")

FIG._7

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

U.S. Patent Dec. 10, 2002 Sheet 10 of 22 US 6,493,347 B2

REASI)OFCJIIE?%LIJEEST READ ADDRESS 804
802"

806
AN WRITE ADDRESS

808
Y DATA FIELD

FIG._8

— 902
906 Bs Bp | By |By [Bs |By |Bs V'

904 <18y | By By Be By 902
B . B . B . 902
bvad kDI ERIOIR 6)

900-7
\ 900-1 \ N 900-2 \ 900-4 \ 900-6

508 900-1 900-3 900-5

FIG._9

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

U.S. Patent Dec. 10, 2002 Sheet 11 of 22

RECEIVE READ
REQUEST

|

US 6,493,347 B2

1000
L/

DECODE READ
REQUEST TO

TO SEARCH

DETERMINE COLUMN

1002
L/

1

SEARCH FOR FIRST
PLACE HOLDER
AVAILABLE

l

1004

TRANSFORM
PLACE HOLDER BY

Y

1006
L/

STORING ADDRESS

LOAD NEXT
READ REQUEST

FIG._10

1008

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

US 6,493,347 B2

Sheet 12 of 22

Dec. 10, 2002

U.S. Patent

0501 .\A

A
— N
501
— 3
NWV3ELS - N AV3IH1S
6lE— | . 2501
®
o \ \ ”
5501
SL13aMNOVd Y S13NoVd
ONIODLNO g RvaLLS s | N SWVILULS ONINOONI
61L& \ 2501
VWON j
< Avadls > R ﬁ WVIHLS
61 2501
PSOL~
“TWvauls s w L Av3YLS
616 z501

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

U.S. Patent Dec. 10, 2002 Sheet 13 of 22 US 6,493,347 B2
104~
4)
304-0 ME 316-0
~ | Mom BANK 105 —
304-1 316-1
A W MEMORY BANK 105 Waldida
1
304-2 316-2
TN MEMORY BANK 105 I diadel
2
®
[]
®
304-7 316-7
N MEMOhF/{IY BANK 105 Walhaad
7
N M
319
/S
NOTIFICATION
QUEUES

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

U.S. Patent

PBN -SLOT# 0

Dec. 10, 2002

Sheet 14 of 22

_____ -)
!
!
|
!
!
|
''''' —
!
!
|

&

_-Z_ﬁi 2

-'_O<’j
EEw:
ok
ZO0<
2 |
. Yo
) I !
| i !
| y |
. Yo
i | i
! i !
|\ y |

2239 Ly

_ ARy TR
L A g

P ’Q&;@ﬁ

NOTI-
FICATION
AREA

o
T [s)}
o
1 %< j
| O
Z0<
.

105

Y
FIG._11C

PCA
0

US 6,493,347 B2

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

U.S. Patent Dec. 10, 2002 Sheet 15 of 22 US 6,493,347 B2

s /1120 - /17220

VCA VBN

FIG._11D

1150
‘/_

0 2
VBN =4 1 3 NUMBER
OF ACTIVE
2 4 BANKS B-5
3 6
4 7 —» PBN =7
5 —
6 -—
7 _
1122~\\
23 12 11 0
VCA VIRTUAL PAGE ADDRESS CELL ADDRESS
Y
2a~ VP MAP 1130
22 12 1 , 0
PCA PHYSICAL PAGE ADDRESS CELL ADDRESS

FIG._11F

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

US 6,493,347 B2

Sheet 16 of 22

Dec. 10, 2002

U.S. Patent

HLL "Old
A

621 479 goez ezt £Y0% eoez

655¢ gest Gest

yAR: 14 6Lcl L18¢ 6/¢ct
LL0€ €0} LL0E €20l
62ce 494 62EE £L94
£85¢
gS¢e 0 Ammwm

S3OVAWVOISAHd) [| ~"E)[f

6=N

S3OVd IVNLHIA

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

U.S. Patent Dec. 10, 2002 Sheet 17 of 22 US 6,493,347 B2

105

(104
M

o -
& ¥ & o oy)
N
- o
|—v m mN mm m
o T N
S 8 h o
™ —
N 5 !
= O]
z ~
z W

_——— e — — ———

150-0
150-7

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

U.S. Patent Dec. 10, 2002 Sheet 18 of 22 US 6,493,347 B2

109
/-
l—»{ SRAM
1300
-
]
110
RLE
1302
[—>
R —
1400
1410 Y
1402~ 1404 ~ ~
MASK NEX;&R?&';‘{DEX PACKET LENGTH
FULL OFFSET | OFFSET | OFFSET | OFFSET
ADDRESS 0 1 2 3

1406 1408 “— 1408 “~— 1408 °“— 1408

FIG._14

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

U.S. Patent Dec. 10, 2002 Sheet 19 of 22 US 6,493,347 B2

1505 \l

/| RESULT 1506 1508)
PROCESSOR | i
L >
1502—0—\ . F1504-0
1502-1~ _ 15041
OUTPUT
1502-2~ | PROCESSOR | | ~1504-2
1502-3 ~ R .
- L J
|]
®
o
®
15027~ 15047
L y,
1510 —~a

1512~ | OUTPUT PORT
IDENTIFIER

1574~ | CELLDATA

FIG._15B

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

U.S. Patent Dec. 10, 2002 Sheet 20 of 22 US 6,493,347 B2

1600—
1606~ | SOURCE ID
1602
1608~ | ROUTE INFORMATION
1604
DATA FIELD L/~
150\\\
//i;;316 —306 308‘\\\
OUTPUT
»| REQUEST |« »| BUFFER
PROCESSOR
MEMORY
12
KS
| STREAM A, OQUTPUT o
OUTPUT FORMATTER[
BUFFER

|/ —]
- e

FIG._17A

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

US 6,493,347 B2

Sheet 21 of 22

Dec. 10, 2002

U.S. Patent

a1 °9old
mdmhv Notv No&v Ncmhv Noﬁw

|
|
|
I
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
[
|
|
|
|
l
|
|
|
|
|
|
!
|
|
'..
|
|
|
|
|
'.
|
|
|
!
|
'.
|
|
|
|
|
n

1

mokww motv moﬁv mokhv momhv

———— e —— e —_—— — —

e e e e —— — —
‘

" 8IE

T 6LE

- 8IE

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

U.S. Patent

Dec. 10, 2002

RECEIVE DATA
PACKET

1800
L/

l

DIVIDE PACKET
INTO FIXED
LENGTH CELLS

l

EXTRACT KEY AND
STORE IN KEY
BUFFER

Y

ROUTE CELLS TO
MEMORY BANKS

1806
A

l

STORE ADDRESS
OF FIRST CELLAND
OFFSETS

1808
/

!

CREATE INDIRECT
CELLS

1810
L/

i

TRANSFER ROUTE
REQUEST TO
CONTROLLER

1814
|/

Sheet 22 of 22

US 6,493,347 B2

1

1816 ~ |

LOOK UP
DESTINATION AND
GENERATE RESULT

l

1818 _

TRANSFER RESULT
TO OUTPUT
SWITCH

l

1820 \

GENERATE READ
REQUEST AND
TRANSFER
TO INPUT SITE

l

1822 U

ISSUE READ
REQUEST TO
MEMORY

y

1824 |

WRITE CELL DATA
AND OUTPUT
PORT ID

l

1826 “

COUPLE CELL DATA
AND MEDIA HEADER
AND STREAM DATA

FIG._18

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

US 6,493,347 B2

1

MEMORY ORGANIZATION IN A
SWITCHING DEVICE

This is a continuation-in-part of U.S. application Ser. No.
08/844,171, entitled “HIGH SPEED SWITCHING
DEVICE”, filed Apr. 18,1997, now U.S. Pat. No. 5,905,725,
which is a continuation-in-part of U.S. application Ser. No.
08/767,576, entitled “HIGH SPEED VARIABLE LENGTH
BEST MATCH LOOK-UP IN A SWITCHING DEVICE”,
filed on Dec. 16, 1996, now U.S. Pat. No. 5,909,440.

BACKGROUND

The present invention relates generally to data routing
systems, and more particularly to methods and apparatus for
efficiently routing packets through a network.

In packet switched communication systems, a router is a
switching device which receives packets containing data or
control information on one port, and based on destination
information contained within the packet, routes the packet
out another port to the destination (or an intermediary
destination).

Conventional routers perform this switching function by
evaluating header information contained within a first data
block in the packet in order to determine the proper output
port for a particular packet.

Efficient switching of packets through the router is of
paramount concern. Referring now to FIG. 1a, a conven-
tional router includes a plurality of input ports 2 each
including an input buffer (memory) 4, a switching device 6
and a plurality of output ports 8.

Data packets received at an input port 2 are stored at least
temporarily, in input buffer 4 while destination information
associated with each packet is decoded to determine the
appropriate switching through the switching device 6. The
size of input buffer 4 is based in part on the speed with which
the destination information may be decoded. If the decoding
process takes too long as compared to the rate at which
packets are received, large sized memory elements may be
required or packets may be dropped.

In addition, the size of input buffer may be influenced by
a condition referred to as “blocking”. Packets may be forced
to remain in the input buffer after the destination information
is decoded if the switching device cannot make the connec-
tion. Blocking refers to a condition in which a connection
cannot be made in the switch due to the unavailability of the
desired output port (the port is busy, e.g., routing another
packet from a different input port). In summary, the size of
input buffer 4 is dependent on a number of factors including
the line input rate, the speed of the look-up process, and the
blocking characteristics for the switching device.

Unfortunately, conventional routers are inefficient in a
number of respects. Each input port includes a dedicated
input buffer and memory sharing between input ports is not
provided for in the design. Each input buffer must be sized
to meet the maximum throughput requirements for a given
port. However, design trade-offs (cost) often necessitate
smaller buffers for each port. With the smaller buffers, the
possibility arises for packets to be dropped due to blocking
conditions. While excess memory capacity typically exists
in the router (due to the varied usage of the input ports), no
means for taking advantage of the excess is afforded.

To minimize the occurrence of dropping packets, design-
ers developed non head-of-line blocking routers. Referring
now to FIG. 1b, a conventional non head-of-line blocking
router includes a plurality of input ports 2 each including an

15

20

25

30

35

40

50

55

60

65

2

input buffer (memory) 4, a switching device 6 and a plurality
of output ports 8 each having an output buffer 9. In order to
provide non head-of-line blocking, each output port 8 is
configured to include an output buffer 9. Each output port
could simultaneously be outputting packets as well as
receiving new packets for output at a later time. As the size
of the output buffer is increased, fewer packets are dropped
due to head-of line blocking at input ports.

However, these designs are even more inefficient in terms
of memory capacity and cost. Again, each output port
includes a dedicated output buffer and memory sharing
between output ports is not provided for in the design. Each
output buffer must be sized to meet the maximum through-
put requirements for a given port (in order to maintain its
non head-of-line blocking characteristics). Even more
excess memory capacity typically exists in the router (due to
the varied usage of the input ports and output ports), yet no
means for taking advantage of the excess is afforded. Twice
the amount and bandwidth of memory has to be used than
required to support the amount of data being moved through
these types of devices.

SUMMARY OF THE INVENTION

In general, in one aspect, the invention provides a router
for switching data packets from a source to a destination in
a network. The router includes an input port for receiving a
data packet and a physically distributed memory including
two or more banks. Each memory bank includes a global
data area for storing portions of the data packet. The router
further includes an input switch for streaming across the
memory banks uniform portions of the data packet, a con-
troller for determining packet routing through the router, an
output switch for extracting in order the portions of packet
data stored in the global data area of each memory bank and
forwarding the packet data to an appropriate output port and
an output port for transferring the data packet to the desti-
nation.

In another aspect the invention provides a router for
switching data packets from a source to a destination in a
network in which the router includes a distributed memory.
The distributed memory includes two or more memory
banks. Each memory bank is used for storing uniform
portions of a data packet received from a source and linking
information for each data packet to allow for the extraction
of the uniform portions of a data packet from distributed
locations in memory in proper order after a routing deter-
mination has been made by the router.

Aspects of the invention include numerous features. The
distributed memory includes an output queue for storing a
notification indicative of the routing of the data packet
through the router. The notification includes linking infor-
mation for retrieving at least a first cell of the data packet
from the distributed memory. The notification includes link-
ing information for the first 5 cells of the data packet.

The notification includes an address for an indirect cell.
The indirect cell is stored in the distributed memory and
includes linking information for extracting cells in order
from the distributed memory.

Each memory bank includes a global data area for storing
portions of data packets and a notification area for storing
notifications. The notification area is sized to be

5 of a size of the global data area for a given memory
bank.

The router includes a plurality of multi-function multi-
ports. Each multi-function multiport includes one or more
input ports and output ports for receiving and transmitting

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

US 6,493,347 B2

3

data packets through the router. A portion of the distributed
memory is located within each multi-function multiport such
that each multi-function multiport includes a memory bank
having a global data area and a notification area. The
notification area of a given multi-function multiport stores
notifications for data packets to be routed through an output
port of the given multi-function multiport. Memory reads
and writes to and from the distributed memory are sized to
be 64 bytes.

The router includes a mapping means for mapping from
a virtual address space to a physical address space associated
with the distributed memory. The mapping means is used for
detecting aged packets in memory and allowing for easy
overwriting thereof such that garbage collection of aged
packets is not required.

In another aspect, the invention provides a method of
routing a data packet through a router in a system transmit-
ting data packets between a source and a destination over a
network including the router. The method includes receiving
the data packet, dividing the data packet into a cells of a
fixed size and storing the cells in a distributed memory. The
distributed memory includes two or more memory banks.
Consecutive cells from the data packet are stored in con-
secutive banks of the distributed memory. Linking informa-
tion is stored in one bank of the memory for linking cells of
the data packet that are stored throughout the distributed
memory. The linking information is used for extracting the
cells in order for transmission from the router to the desti-
nation.

In another aspect, the invention provides a method of
storing a data packet in a router while a look-up engine
determines the proper path through the router for the data
packet in a system transmitting data packets between a
source and a destination over a network including the router.
The method includes dividing the data packet into fixed
length cells and storing the cells and linking information for
reconstructing the data packet across a global data buffer.
The global data buffer includes two or more memory banks.
The data packet is divided among the memory banks.

In another aspect the invention provides a method for
determining which data packets stored in a router are to be
passed through the router in a system transmitting data
packets between a source and a destination over a network
including the router. The method includes determining a
route through the router for a data packet. The route includes
a notification indicating a starting address in memory where
the data packet is stored. The notification is processed
including queuing the notification with other notifications to
be output on the same output port of the router in a stream
queue. The fullness of the stream queue is determined along
with a drop criterion based in part on fullness of the stream
queue. A random number is generated and compared with
the drop criterion. The notification is dropped based upon
results of the comparison.

Aspects of the invention include numerous features. The
fullness test is performed when the data packet reaches a
head of the stream queue. The fullness is a percentage and
the random number generated is between zero and one.

Among the advantages of the invention are one or more
of the following. A switch is provided that includes an
efficient allocation of memory across ports and does not
exhibit head-of-line blocking. The allocation enables all
ports to share memory resources.

Memory bandwidth for the system may be tailored to
meet specific user defined requirements. A switch is pro-
vided in which the amount of memory in the switch is

10

15

20

25

30

35

40

45

50

55

60

65

4

proportional to system bandwidth where the constant of
proportionality is the round-trip network delay.

Memory bandwidth is maintained at a minimum neces-
sary level of approximately twice the throughput rate.
Memory bandwidth may be advantageously expanded by the
use of plug in modules.

A single system-wide virtual address space is provided
that allows the memory to be read and written conveniently.
An addressing scheme is provided that maps physical
memory space (and its associated available memory
modules) into a virtual space to simplify memory address
computations and provide a mechanism for detecting if a
notification (route) is pointing to cells that have been over-
written since the original data was written into memory.

Memory bandwidth for read and write operations is
guaranteed for each port.

Other advantages and features will be apparent from the
following description and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1a and 1b are block diagrams of conventional
router devices.

FIG. 2a is a schematic block diagram of a data routing
system according to one embodiment of the present inven-
tion.

FIG. 2b is a schematic block diagram of a router accord-
ing to one embodiment of the present invention.

FIG. 3a is a schematic block diagram of an multi-function
port according to one embodiment of the present invention.

FIG. 3b is a schematic block diagram indicating data
transfers between components of the router of FIG. 2b
according to one embodiment of the present invention.

FIG. 3c is a data structure for a cell transferred between
a multi-function port and an input switch according to one
embodiment of the present invention.

FIG. 4 is a schematic block diagram of a router including
the timing and ordering of transfers from the input port to
input switch according to one embodiment of the present
invention.

FIG. 5a is a schematic block diagram of an input switch
according to one embodiment of the present invention.

FIG. 5b is a schematic block diagram of a router including
the timing and ordering of transfers from the input port to
memory according to one embodiment of the present inven-
tion.

FIG. 6 is a data structure for a route request stored in a key
buffer according to one embodiment of the present inven-
tion.

FIG. 7 is a data structure for an indirect cell according to
one embodiment of the present invention.

FIG. 8 is a data structure for a cell transferred between the
input switch and a memory bank according to one embodi-
ment of the present invention.

FIG. 9 is a schematic block diagram of a reservation table
according to one embodiment of the present invention.

FIG. 10 is a flow diagram of a process of loading a
reservation table according to one embodiment of the
present invention.

FIG. 11a is a schematic block diagram of main memory
according to one embodiment of the present invention.

FIG. 1156 is a schematic block diagram of a global data
buffer according to one embodiment of the present inven-
tion.

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

US 6,493,347 B2

5

FIG. 11c is a schematic block diagram of a router includ-
ing 3 memory banks according to one embodiment of the
present invention.

FIG. 11d is a schematic block diagram of a virtual address
block for use in addressing memory according to one
embodiment of the present invention.

FIG. 11e is a schematic block diagram of an index table
for use in mapping physical address space to virtual address
space according to one embodiment of the present invention.

FIG. 11f shows the relationship between physical and
virtual addresses according to one embodiment of the
present invention.

FIG. 11g is an example of a mapping between physical
space and virtual space according to one embodiment of the
present invention.

FIG. 114 shows the relationship between physical and
virtual address space over time according to one embodi-
ment of the present invention.

FIG. 12 is a schematic block diagram of a router including
the timing and ordering of transfers from the input port to
memory according to one embodiment of the present inven-
tion.

FIG. 13 is a schematic block diagram of a controller
according to one embodiment of the present invention.

FIG. 14 is a data structure for an output request trans-
ferred from the controller to the output switch according to
one embodiment of the present invention.

FIG. 15a is a schematic block diagram of an output switch
according to one embodiment of the present invention.

FIG. 15b is data structure for a cell output from a memory
bank to output switch according to one embodiment of the
present invention.

FIG. 16 is a data structure for a cell transferred from the
output switch to an output port in a multi-function multiport
according to one embodiment of the present invention.

FIG. 17a is a schematic block diagram for an output
section of a multi-function port according to one embodi-
ment of the present invention.

FIG. 17b is a schematic block diagram for a queue system
for storing notifications according to one embodiment of the
present invention.

FIG. 18 is a flow diagram for a process of routing a packet
through a router according to one embodiment of the present
invention.

DETAILED DESCRIPTION

Referring to FIG. 2a, in a packet switching system, a
source 10 is connected to one or more routers 20 for
transmitting packets to one or more destinations 30. Each
router includes a plurality of multi-function multiports that
are connected to various sources and destinations. A packet
from source 10 may pass through more than one router 20
prior to arriving at its destination.

Referring to FIG. 2b, each router 20 includes an input
switch 100, an output switch 102, a global data buffer 104
including one or more memory banks 105, a controller 106
and a plurality of multi-function multiports 150 (150-0
through 150-3), respectively. Associated with the controller
106 is controller memory 109 for storing a routing table.
Input switch 100 and output switch 102 are connected to
each multi-function multiport 150 in router 20. In one
embodiment, router 20 includes plug-and-play multi-
function multiports which allows for easy expansion capa-
bility. The present invention will be described with reference

10

15

20

25

30

35

40

45

50

55

60

65

6

to a system including eight multi-function multiports 150
(even though FIG. 2b only shows four, with each multi-
function multiport including up to sixteen input ports and
sixteen output ports. Other configurations may be used
depending on user load conditions. Each multi-function
multiport includes one or more input ports, one or more
output ports and a memory. The configuration and operation
of the multi-function multiports will be described in greater
detail below.

In operation, packets are received at a multi-function
multiport 150, transferred to input switch 100 and stored
temporarily in global data buffer 104. When the packet is
received by switch 100, a key is read from the first data
block in the packet and transferred to controller 106. The key
contains destination information which is derived from the
header field associated with the first block of data in a packet
and other information (such as source ID, priority data and
flow ID).

A route look-up engine 110 in controller 106 performs a
trie based search based on the key information and returns
a result which includes the output multiport associated with
the destination. The result is coupled with other information
(such as source ID, flow ID and packet length) for routing
the packet through router 20 and provided as a notification
from controller 106 to output switch 102. Output switch 102
transfers the notification to the identified multi-function
multiport 150. Upon receiving the notification information,
the multi-function multiport 150 initiates the transfer of the
packet from global data buffer 104 through output switch
102 to the appropriate multi-function multiport 150.
Multi-function Multiports

Referring to FIG. 3a, each multi-function multiport 150
includes an input section 270, an output section 280 and a
memory section 290.

Input section 270 includes a line input interface 300, a
data handler 302 and an input switch interface 304.

Output section 280 includes an output request processor
306, a line output interface 308, a storage device 310, stream
output buffers 312 (one for each output stream), output
formatter 314, an output switch interface 316 and head and
tail queue buffer 318. In addition, the output section includes
a portion of input switch interface 304. Specifically, input
switch interface 304 includes read request queues 305, one
for each memory bank. The use and operation of the read
request queues, stream output buffers, and head and tail
queue will be discussed in greater detail below in association
with FIGS. 17a and 17b.

Memory section 290 includes a memory bank 105 (which
represents a portion of the global data buffer 104) and a
notification queue body 319. The use an operation of the
memory section will be discussed in greater detail below in
association with FIG. 17b.

The multi-function multiport is used in conjunction with
the input switch, output switch and controller as is shown in
FIG. 3b. The various piece components of the input section,
output section and memory section will be described in
greater detail below. The combination of the devices into a
single unit simplifies the interfaces between the components.

Referring again to FIG. 3a, packets are received at line
input interface 300. As the packets are received, data handler
302 divides the packets received into fixed lengths cells. In
one embodiment, the length of each cell is 80 bytes, with 16
bytes of internal header (control information) and 64 bytes
of cell data. As the data handler divides the incoming
packets into fixed length cells, it synchronously outputs the
cells to input switch 100 through input switch interface 304.

The format for transfers between the multi-function mul-
tiport and the input switch is shown in FIG. 3c. A cell 350

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

US 6,493,347 B2

7

transferred from a multi-function multiport 150 to the input
switch contains a cell header 352 and cell data 354. Cell
header 352 includes a type field 356, stream field 358, and
packet header fields 360. In addition, cell header 352
includes an independent read request in the form of a
multi-function multiport identifier 366 and address 368.

The type field 356 indicates the type of cell to be
transferred from the multi-function multiport. At each cell
slot (20 clock cycles in one embodiment), a multi-function
multiport may transfer either a data cell, an indirect cell
placeholder, or a delayed indirect cell placeholder. Data cells
contain data associated with an incoming packet. An indirect
cell placeholder is an empty cell, and is used in conjunction
with indirect addressing for the storage of the cells in the
global data buffer 104. Delayed indirect cell placeholders
arise when a data stream that requires indirect addressing
terminates at a time prior to the designated time for writing
the last indirect addressing cell associated with the data
stream to global data buffer 104. The generation and opera-
tion of indirect placeholders and delayed indirect placehold-
ers will be discussed in greater detail below in conjunction
with FIG. 7.

Stream field 358 indicates the stream to which the cell
data belongs. In one embodiment of the present invention,
each multi-function multiport is capable of handling up to
sixteen separate streams of data at a time, one on each of its
respective 16 input ports.

Packet header field 360 contains header information asso-
ciated with a given packet and includes start offset
information, packet length and interface index information.

Multi-function multiport identifier 366 identifies the
multi-function multiport which is sourcing the read request.
Address 368 indicates the address in global data buffer 104
to be read.

Referring now to FIG. 4, a single cell 450 is transferred
from a multi-function multiport 150 to input switch 100 at
each cell (time) slot “T”. For a given cell slot “T”, input
switch 100 receives a total of “N” cells, where “N” is equal
to the number of multi-function multiports.

In one embodiment, cells from a given stream may be
written to memory in an order that is different from the
arrival order. These out of order writes are performed to
make efficient use of scarce bandwidth between the multi-
function multiports and the input switch. When a packet
comes in to the multi-function multiport, it is broken up into
cells as the bytes arrive and the cells are placed in per-bank
output queues on the way to the input switch. These queues
are designed to share scarce interconnect bandwidth
between the streams of a multi-functional multiport in the
most efficient way possible, but they have the detrimental
effect of reordering cells at the interface between the multi-
function multiport and the input switch. Thus the cells from
a given stream may arrive at the input switch out of order.
The multi-function multiport marks the data cells of a stream
with one of four codes: first cell (FC); intermediate data cell
(DCO); last cell (LC); or first cell which happens to be also a
last cell (FLC).

Input Switch

Referring to FIGS. 2b and 5a, input switch 100 includes
a round robin data handler 500, one or more input interfaces
(501-0 through 501-7, one for each multi-function multiport
150), one or more memory interfaces 502 (502-0 through
502-7, one associated with each memory bank), a like
plurality of pointers 504 (504-0 through 504-7), an output
processor 505, one or more output interfaces 506 (506-0
through 506-7, one for each multi-function multiport 150),
a reservation table 508, an indirect cell processor 510,
controller interface 512 and read controller 517.

10

15

20

25

30

35

40

45

50

55

60

65

8

a) Transfers through the Input Switch

Round robin data handler 500 receives cells from each
multi-function multiport and transfers them to output pro-
cessor 505 for output to an appropriate memory bank 105 in
global data buffer 104. Round robin data handler 500
services the inputs (cells) received on input interfaces 501 in
a round robin, time division multiplexed manner. That is, for
a given cell slot, one cell from each multi-function multiport
is received at the round robin data handler 500 and subse-
quently transferred to output processor 505 for transfer at the
next cell slot to a memory bank 105 in global data buffer
104. At the next time cell slot, data handler 500 transfers the
next cell received from the same multi-function multiport to
output processor 505 for transfer to a different memory
bank. In one embodiment, the next cell received is trans-
ferred to the next memory bank (next in numerical order,
modulo N) in the memory array. Alternatively, another time
dependent permutation may be used to control the transfer of
successive cells from the same multi-function multiport.

Referring to FIG. 5b, the timing and ordering of transfers
from the multi-function multiport to memory is shown. For
the purposes of this example, a sequence of cells is depicted
on each transmission line. For the purposes of this example
only, each transmission line is considered to be very long
and contains data associated with two or more cells. In
operation, the transmission lines are short and multiple cells
are not present on a transmission line at a given time. At cell
slot T4 a series of cells 450-0 through 450-7 are transferred
down transmission lines 458, one from each multi-function
multiport 150 to input switch 100. At cell slot T3 (one just
prior in time to cell slot T4) a series of cells 452-0 through
452-7 are transferred down transmission lines 458, one from
each multi-function multiport 150 to input switch 100.

Round robin data handler 500 and output processor 505
within the input switch 100 transfer cells out to global data
buffer 104 on transmission lines 460. As can be seen at cell
slot T2, output processor 505 outputs one cell 454-B, to
454-B, to each memory bank in a single cell slot. The “B,”
designator indicates the multi-function multiport from
which the particular cell was received. One cell from each
multifunction multiport is written to global data buffer 104
per cell slot. At time period T1 (one cell slot prior to cell slot
T2), again one cell (456-B, 456-B,) is written to each
memory bank. Round robin data handler 500 time division
multiplexes the transfers to output processor 505 such that
consecutive cells from the same multi-function multiport are
written to consecutive memory banks 105 (modulo N) in
global data buffer 104.

Referring again to FIG. 5a, pointer 504 indicates the
location in an associated memory bank to which the next cell
will be written. Output processor 505 writes a cell to a
memory location in a particular memory bank based on the
next available address in the bank as is indicated by the
associated pointer 504.

b) Key Reading and the Linking Process

Round robin data handler 500 includes a key reading
engine 514 for determining the key information associated
with a first cell in a packet and a linking engine 515 for
linking cells in the same packet.

The process of reading key information is known in the
art. After the key is determined for a given packet, it is stored
temporarily in key buffer 516 in input switch 100 until the
entire packet has been stored in global data buffer 104. The
data structure for entries 600 in the key buffer 516 is shown
in FIG. 6. Each entry or “info cell” 600 includes a key 602,
full address 604, offsets 606 and an indirect cell indicator
608.

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

US 6,493,347 B2

9

Referring now to FIGS. 5a, 6 and 7, linking engine 515
determines the starting address (full address) in memory for
where the first cell in a given packet is to be stored in
memory. The starting address includes the bank number in
global data buffer 104 (the bank number which is assigned
to store the cell by round robin data handler 500) and the first
available address location in the designated bank (as is
indicated by the associated pointer 504). The starting
address (full address 604) is stored in key buffer 516 along
with the associated key 602 for the packet. When the next
cell associated with the same packet arrives at switch 100,
an offset 606 associated with the offset at which the cell is
to be written (relative to the full address) is computed and
stored in key buffer 516. In one embodiment of the present
invention, up to four offsets 606 are stored. Each offset
address is computed based on the relative offset in memory
between the location of the last cell in memory and the value
of the pointer 504 associated with the current memory bank
which is to be written.

If more than five data cells are included in a packet, then
the indirect cell indicator for that packet is set, and the last
offset indicates the address in memory where the first
indirect cell associated with the packet is stored. Indirect
cells will be described in greater detail below in reference to
FIG. 7. After the packet has been stored in memory, the
associated info cell in key buffer 516 (a route look-up
request) is forwarded through the controller interface 512 to
the controller 106 for processing. Alternatively, the info cell
may be transferred after the first five cells have been stored
in memory.

The linking or threading of cells for a packet is performed
by using the offsets described above and indirect cells.
Offsets are used to link cells in a packet. Offsets may be
stored along with key information and routed through con-
troller 106 (FIG. 2b) or may be stored in indirect cells. In one
embodiment, if a cell contains 5 cells or less, no indirect
cells are required to be used. Indirect cell processor 510
performs the linking of cells in memory for a given packet.
Indirect cell processor 510 generates indirect cells for stor-
age in global data buffer 104. Indirect cells contain offset
information associated with the relative offset in memory
space between contiguous cells in the packet. Indirect cell
processor includes indirect cell memory 520 for storing
indirect cell data during the formation of indirect cells.

Referring now to FIG. 7, the data structure for an indirect
cell 700 includes a linking field 702, a plurality of offset
fields 704, and a last field 706. Linking field 702, when not
set, indicates the current indirect cell is the last cell in the
chain of indirect cells for a given packet. If set, then more
indirect cells exist for the given packet. If more indirect cells
exist, then last field 706 indicates the offset to the location
in memory of the next indirect cell associated with the
packet. In one embodiment, indirect cells contains up to 56
offset data blocks for linking 56 cells in memory.

As was described above, when a packet is received, the
linking engine processes the first five cells and stores linking
information in the form of a start address and four offsets in
key buffer 516. In the event more than five cells are
contained within a packet, the indirect cell processor takes
over for the linking engine and computes the offsets asso-
ciated with the locations in memory where the remaining
cells in the packet are stored. Round robin processor 500
passes cells to the output processor 505 for transfer to an
associated memory bank in global data buffer 104. Round
robin processor 500 enables the indirect cell processor when
the packet being processed contains more than 5 cells (based
on header information included within the first cell). At the

10

15

20

25

30

35

40

45

50

55

60

65

10

time for writing the fifth cell to memory, indirect cell
processor 510 stores in indirect cell memory 520 the address
(the “indirect cell address™) associated with the location in
memory at which the fifth cell would have been written if it
had been the last cell in the packet. The indirect cell address
indicates the location in memory where the indirect cell is to
be written when full (or when the last cell of the packet is
processed).

When an indirect cell is full (having stored offsets in all
available locations except the last field 706), then the
indirect cell processor stores the offset associated with the
location in memory where the next indirect cell is located in
the last field 706. Thereafter, the full indirect cell is written
to its appropriate place in memory. The writing of the
indirect cell to memory coincides with the receipt of an
indirect cell placeholder by the input switch 100 from the
associated multi-function multiport 150. This process con-
tinues until the last cell in a packet is stored in memory. At
that time, the last indirect cell is written to memory, and the
associated entry 600 from the key buffer 516 is transferred
to the controller 106 for processing. For a given packet, all
indirect cells are written to the same memory bank in the
global memory buffer.

As often will be the case, the last cell of a packet will not
coincide with the timing required to write the completed
indirect cell immediately into memory. This is because
packet length is completely arbitrary. The end of a packet
will likely not coincide with the last available entry of an
indirect cell. When a packet has completed (all cells have
been received by the input switch) and a last entry in the
indirect cell is written, the indirect cell is free to be written
to memory. However, the writing will be delayed until the
proper time, hence the term delayed indirect cell. A delayed
indirect cell is a indirect cell that is the last indirect cell
associated with a packet. It is delayed, because it is written
to memory after the rest of the packet has been written to
memory. The timing of the write to memory is dictated by
the address which is reserved for the indirect cell. As was
described above, at the time for the creation of an indirect
cell, its position in memory is reserved. The delayed indirect
cell will be written to memory at the next time slot available
for the particular multi-function multiport to write to the
particular memory bank after the packet has been completed.
The timing of the write to memory of delayed indirect cells
coincides with the receipt of a delayed indirect placeholder
from the appropriate multi-function multiport 150.
¢) Transfers to Memory

The data structure of a cell transferred from input switch
100 (via the output processor 505) to a memory bank 105 in
global data buffer 104 is shown in FIG. 8. The unit of
addressing and memory allocation is a 64-byte cell, and all
accesses to memory are either cell reads or cell writes. A cell
size of 64 bytes was chosen as a compromise between the
conflicting requirements of bandwidth efficiency and storage
efficiency. DRAM bandwidth efficiency dictates larger sizes,
while storage loss caused by internal fragmentation when
fitting variable size packets into fixed size cells dictates
smaller sizes.

At each cell slot, output processor 505 generates a cell
800 which includes a read request source field 802, read
address 804, write address 806 and data field (cell data
received from multiport 150) 808. The read request source
field 802 indicates the output port (in the particular multi-
function multiport 150) requesting the read (destination
output port). Output processor 505 receives read requests
from read controller 517 and bundles the read request with
any write request received from round robin data handler

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

US 6,493,347 B2

11

500 destined for the same memory bank. At each cell slot,
output processor 505 provides a cell 800 which may include
a write and read request to each memory bank 105 in global
data buffer 104.

Read controller 517 controls the transfer of read request
signals flowing from input switch 100 out memory interface
502 to the individual memory banks in global data buffer
104. Read controller 517 receives read requests from each
multi-function multiport through output interfaces 506. The
format of each request includes source identification (output
port) and a full address in memory which is to be read. At
each cell slot, each multifunction multiport port may gen-
erate a read request for processing by switch 100 to read a
memory location in global data buffer 104, resulting in the
reading of a cell (a read reply) from a memory bank 105 (on
a subsequent cell slot) to output switch 102.

Read controller 517 loads a reservation table 508 as
requests to transfer packets are received from the various
multi-function multiports 150. The reservation table is
loaded such that at every cell slot a single read request is
generated for each bank of memory 105. Referring now to
FIG. 9, reservation table 508 includes a plurality of columns
900, one for each memory bank 105 in global data buffer
104, a plurality of rows 902, placeholders 904 and loaded
entries 906. Each row represents a set of read requests (one
per memory bank) to be generated on a single cell slot. Each
row includes a single entry for each multi-function multiport
150. At each cell slot, each multi-function multiport is
capable of requesting a read from a single memory bank 105
in global data buffer 104. Associated with reservation table
508 is a read pointer 908. The pointer points to the next row
in the reservation table to be read. Rows ahead of the read
pointer correspond to requests that will be queued at a later
cell slot time. In one embodiment, the pointer moves at least
one row in each cell slot time.

Loaded entries 906 reflect read requests to be performed
as a result of reservation requests received from individual
multi-function multiports. Placeholders 904 represent avail-
able slots in which read requests for a particular memory
bank are still available (e.g., read requests which have not as
of yet been received for this memory bank from a particular
multi-function multiport). At each cell slot, the read con-
troller 517 performs three functions: loading entries in the
reservation table at the first available location in the table
(after the read pointer), outputting the last row as read
requests to the output processor 505; and refreshing the
table, moving out the last row, incrementing the rows and
creating a new row at the top of the table. The number of
rows in the reservation table must be as large as the product
of the latency in processing read requests multiplied by the
number of banks. In one embodiment, 48 rows are included
in reservation table 508 reflecting a system including six cell
slots of latency and eight memory banks.

At initialization, reservation table 508 contains placehold-
ers 904 in all of the rows 902. Placeholders 904 are locations
in the reservation table which have not been loaded. As read
requests are processed by the read processor, certain ones of
the placeholders 904 are converted to loaded entries 906
based on the read requests. Loaded entries 906 include a
read request address.

Referring now to FIG. 10, the process of loading the
reservation table includes receiving a read request (full
address) from an multi-function multiport (1000). The read
controller decodes the read request to determine the column
(based on the memory bank to be read from) in the reser-
vation table to search (1002). The read processor searches,
starting at the location indicated by pointer 908 in the

10

15

20

25

30

35

40

45

50

55

60

65

12

reservation table, for the first placeholder associated with the
multi-function multiport that generated the read request
(1004). The read processor transforms the placeholder 904
to a loaded entry 906 by writing the full address of the read
request at the location (1006). The process repeats for each
read request received by the read controller (1008).
Memory Architecture

Referring now to FIGS. 11a—c, main memory 1050 is
used as temporary buffer storage for packets flowing into the
system on input streams 1052 and out of the system on
output streams 1054. Main memory is divided into two
distinct parts: a global data buffer 104 that is used to store
incoming packets while the lookup engine determines the
outgoing stream for each packet; and packet notification
queues 319 that are used to store packet pointers
(notifications) after the outgoing stream has been deter-
mined. Notification queues 319 are associated with outgoing
streams, whereas the global data buffer 104 forms a common
pool shared amongst all the streams.

Global data buffer 104 includes a plurality of memory
banks 105. Associated with each memory bank is an input
switch interface (an input port) 304 and output switch
interface (an output port) 316. At each cell slot, each
memory bank receives at most one write and one read
request via input switch interface 304. The write requests are
associated with cells received from a multi-function multi-
port 150. Read requests reflect a request for cell data to be
transferred from a memory bank 105 to output switch 102
for ultimate transfer to a requesting multi-function multiport
150.

The memory in the multi-function multiport configuration
is physically distributed across a number of banks b, one
bank for each active multi-function multiport in the system.
FIG. 11c show a system including three banks, numbered 0,
1 and 4 respectively, representative of three active multi-
function multiports. Each bank is divided into two
contiguous, non-overlapping regions referred to as global
data area (memory bank 105) and the notification area
(notification queue 319). The global data area for a bank
constitutes 1/b of the memory of the global data buffer 104.
The notification area provides space for queuing notifica-
tions that will be sent out on the line output interface 308 for
a given multi-function multiport. Typically, the global data
area is four times larger than the notification area; this factor
derives from the ratio between data size and notification size
for the shortest packet.

Each bank’s memory bandwidth is sufficient for reading
and writing packets from a full-duplex OC-48 interface as
well as for queuing and dequeuing notifications for the
worst-case example of single-cell packets. Thus, both the
aggregate memory size and the aggregate memory band-
width scale linearly with the number of active multi-function
multiports b in the system.

In one embodiment, each memory bank is implemented as
two sub-banks using two 72-bit wide SDRAM (static
dynamic random access memory) DIMM’s (dynamic in-line
memory modules) cycling at 125 MHZ . The sub-banks are
transparent to the input and output switch resulting in what
appears to be one continuous bank from the perspective of
the switches. However, the sub-bank architecture allows for
better throughput. Each DIMM has a 72-bit wide ECC (error
correction code) protected data path going to 9 SDRAM
chips each of which is 8 bits wide. The two DIMM’s have
separate address busses and are addressed independently of
one another. The DIMM’s are interleaved on bit O of the
23-bit address. In one embodiment, the smallest memory
bank configuration is 32 MBytes, using 16 Mbit chips and
the largest is 512 MBytes, using 256 Mbit chips.

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

US 6,493,347 B2

13

As was described above, a bank can receive at most one
read request and one write request every cell slot. Since a
cell slot is 20 clock cycles at 125 MHZ , this works out to
a peak bandwidth demand of 400 MBytes/sec for reads and
400 MBytes/sec for writes. The worst case notification load
occurs for single cell packets. For unicast traffic, this load is
exactly % the data bandwidth which works out to 100
MBytes/sec for reads and 100 MBytes/sec for writes. In this
embodiment, the total peak memory bandwidth needed is
therefore 1 GByte/sec.

In this embodiment, the peak transfer rate of each DIMM
is 1 GByte/sec, but the sustained rate depends on the actual
mix of reads and writes and how the addresses are distrib-
uted over the internal DIMM banks. In practice, each DIMM
is expected to deliver a sustained data rate of around 650
MBytes/sec. The total of 1.3 GBytes/sec supplied by the two
groups is 30% larger than the maximum sustained require-
ment of 1 GByte/sec/. The 30% headroom provides a way to
sustain instantaneous loads where one DIMM has more
references directed to it than the other. The memory con-
troller for the two DIMM'’s resides in the multi-function
multiport.

In one embodiment, all banks are made the same size and
approximately %sth of the memory in each bank is allocated
to the notification area and #5th to the global data area. The
purpose of this allocation is to make it exceedingly unlikely
for a stream to run out of memory because of space in its
notification queue. With a worst case packet size of 64 bytes,
notifications (sized at 16 bytes) need % th the amount of
storage that packet data needs, which is exactly the propor-
tion allocated. Any cell in the global data buffer may be
accessed via its physical cell pointer, which identifies the
physical bank number and the address of the cell within the
bank. The physical cell pointer defines a system-wide physi-
cal address space. To simplify address computations, as well
as to provide a mechanism to detect old packets, accesses to
the global packet buffer are performed through a system-
wide virtual address space that maps to the physical address
space.

Incoming packets are broken up into as many cells as
needed and the cells are written to the global packet data
buffer as they arrive as described above. The global data
buffer is treated as a single large circular buffer. The input
switch maintains an array of write pointers, one per active
bank, to keep track of where to write the next cell. The
pointers start out at one end of the buffer and advance until
they eventually wrap around and overwrite packets that were
written a long time ago. An ageing mechanism is used to
guard against reading cells that may have been overwritten
by subsequent packets. The cells of packets arriving on a
given stream are interleaved strictly across the active banks
to spread the bandwidth load.

a) Addressing

Global data buffer 104 is divided into banks which are in
turn divided into fixed size, non-overlapping 64-byte units
called cells. The cell is both the unit of addressing and of
memory allocation. All accesses to memory are performed
using two operations: cell read and cell write. Since there is
only one access size, memory allocation is straightforward
and there are no issues of data alignment or byte order.

Each cell in the system is uniquely identified by a physical
cell pointer or PCP, which identifies the cell’s physical bank
number and address within that bank. The set of PCP’s form
a system-wide physical address space that can be used to
read or write any cell in the system. While this space
provides access to all possible banks in main memory, it is
not convenient for reading and writing cells that are part of
the global data buffer.

20

25

30

35

40

45

50

55

60

65

14

For example, physical space may have holes in it corre-
sponding to memory banks (multi-function multiports) that
are either not plugged in or are plugged in but inactive.

In addition, the size of the global data area is not neces-
sarily a power of two (since an odd number of multi-function
multiports may be available and because of the 45 to ¥4 ratios
set forth for the global area and notification areas
respectively), so address computations involve checks that
would normally not be needed. Both these factors make the
address arithmetic that needs to be performed on each access
awkward, and using physical space directly forces each
entity issuing reads and writes to know how to do this
arithmetic. Finally, direct access to physical space provides
no mechanism for detecting if a notification is pointing to
cells that have been overwritten since the original data was
written to memory. A virtual-to-real address mapping
mechanism provides a way to solve these problems. This
mechanism defines a single system-wide virtual address
space that allows the global packet buffer to be read and
written conveniently. All non-diagnostic accesses to the
buffer use this address space.

b) Physical Space

Each memory bank has a unique 3-bit physical bank
number, or PBN, that is equal to the number of the slot in
which the bank is plugged. In one embodiment, slots are
numbered sequentially from 0 to 7 (assuming an eight
multi-function multiport configuration). Note that a bank
may be plugged into any available slot so that the set of
active bank numbers in a system can be an arbitrary subset
of the numbers [0 . . . 7]. The PBN serves as the physical
address of a bank.

Within a bank, cells are identified using a 23-bit physical
cell address, or PCA (1124 of FIG. 11f). Cells are numbered
sequentially starting at O and ending at ™, ", where %, ...
is the number of cells in the bank. In one embodiment, the
maximum amount of memory in a bank is limited by the
architecture to 2% cells, or 512 MBytes.

A bank’s memory is divided into two contiguous non-
overlapping regions: cells [0. . .~ bur—1] are allocated to the
global packet buffer, while cells [V, . .,] are allocated
to queues that hold notifications for packets to be sent out via
the associated multi-function multiport. The number of cells
N, allocated to the global data buffer is the same for each
of the b active banks so each bank contributes exactly 1/b”
of the storage for the buffer. Typically, around Y5sth of the
memory in a bank is allocated for notification queues and
4sth for the global data buffer.

Although each bank is shown to be the same size, note
that only the global packet buffer areas are required to be the
same size across banks. The architecture places no such
restriction on the size of the notification areas even though
they will typically be the same size.

Any cell in the system is identified uniquely by the 26-bit
tuple <PCA><PBN>. This tuple is called the cell’s physical
cell pointer, or PCP. The set of possible PCP values defines
a system-wide physical address space. All cell references
must be translated to a PCP before the cell can be read or
written. In one embodiment, the maximum amount of
memory in the system is limited by the architecture to 22°
cells, or 4 GBytes.
¢) Virtual Space

Referring now to FIG. 114, there is a single, system-wide
virtual address space that allows the global data buffer to be
read and written conveniently and also allows for the easy
detection of aged packets in memory. By providing a map-
ping from virtual to physical address space maintenance of
memory is simplified and no garbage collection of aged

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

US 6,493,347 B2

15

packets is required. The virtual space is defined by the set of
possible values for a 27-bit quantity called the virtual cell
pointer, or VCP (1120). The VCP consists of a 24-bit virtual
cell address, or VCA (1122), concatenated with a 3-bit
virtual bank number, or VBN as shown in the figure 11c.

The set of values for VBN define a virtual bank number
space that make it convenient to do arithmetic on bank
numbers. If there are b active banks in the system, the legal
values of VBN are [0 . . . b-1], and all arithmetic on VBN’s
is done mod b.

The set of values for VCA define a virtual cell address
space for the bank identified by VBN. This virtual cell
address space makes it convenient to do arithmetic on cell
addresses that lie in its bank and also enable ageing checks.

A VCP is translated to a physical cell pointer (PCP), by
performing two separate mappings: first, the VBN is mapped
to a physical bank number (PBN) and then the VCA is
mapped to a physical cell address (PCA). The two mappings
are not independent. In particular, the VCA to PCA mapping
uses states particular to the physical bank produced by the
first mapping.

d) Bank Number Mapping

Virtual bank numbers are translated to physical bank
numbers by the input switch using an 8-entry lookup table
1150 as shown in FIG. 11e. The table is indexed by a 3-bit
VBN and produces a 3-bit PBN as the result. The table The
example shows the table for a system that has five active
multi-function multiports plugged into slots 2,3, 4, 6, and 7.

In general, if there are b active banks in the system, the
first b entries of the table are filled with the physical bank
numbers for these banks.

e) Cell Address Mapping

Referring now to FIG. 11f, virtual cell addresses are also
translated to physical cell addresses by the input switch. As
mentioned earlier, VCA to PCA translation is always done in
the context of a particular physical bank which, by
definition, must be active.

For purposes of simplifying mapping, the virtual and
physical cell address spaces are broken up into contiguous,
self-aligned, 4096 cell regions called pages. The low-order
12 bits of both VPA’s and VCA'’s correspond to the address
of a cell within a page, while the high-order bits correspond
to the address of the page itself. Referring now to FIG. lie,
the mapping process preserves the low-order bits of the
address while mapping the high order bits.

The operation of the VP,,,,, (1130) function is as follows:
Let N be the number of pages contributed to the global
packet data buffer by each bank. From the structure of
VCA’s, it is clear that this number must be an integer in the
range [1 . . . 2048] (The value O is excluded because it
represents the case of no buffer memory). Note that the
number of pages in virtual space is exactly two times the
largest value of N. As will be seen later, this fact is crucial
for the ageing scheme to work.

The VP,,,,, function is time-dependent, but its operation
at a given time is straightforward. For each bank this
function maps a contiguous region of N pages in virtual
space [Vzp, Vzptl, . .., V, 5] onto the N pages of physical
space for that bank (where TP stands for “trailing page” and
LP for “leading page™). All regions are located at the same
point in their respective spaces at a given time. For this
discussion, all arithmetic is mod 4096, so virtual address
space is assumed to wrap around after page 4095. One of the
virtual pages in the region is always mapped to physical
page 0. Let this page be vo=vzp+k. Then, virtual pages
[vyptk, Voptk+1, . . ., V, p] are mapped directly to physical
pages [0, 1, . . . , N-k-1], and virtual pages [Vyp,

10

15

20

25

30

35

40

45

50

55

60

65

16

Viptl, ..., V, p+k=1] are mapped directly to physical pages
[N-k-1, N-k, . . . , N-1]. That is, the N page region is
broken into two disjoint pieces and pages in the two pieces
are mapped one-for-one to identically sized pieces of physi-
cal space. References to virtual pages that lie outside the
region are mapped to physical page OxFFF to indicate that
the reference was to a cell that has been overwritten. FIG.
11g shows this mapping for a simple example where N=9,
and k=3.

The time-dependent behavior of VP,,, » is that the N page
region of virtual space that is mapped moves with time. At
system initialization V, p is set to 0, and Vpis set to —(N-1).
As cells are written to system memory, the write pointers for
each bank advance more or less together but they do not
move in lock-step. The system computes V, . as the high-
order page bits of the bank write pointer that is furthest
ahead; V then is simply (V, p-N+1). FIG. 114 shows how
the region moves with time. The virtual address space is
shown as a circular buffer with page numbers marked on the
outside, and the mapped region is shown highlighted. The
leftmost picture shows the mapping at initialization time,
while the next two show the mapping at progressively later
times.

As the region advances, the value of v, must be updated
periodically so it stays in the range of virtual addresses that
is being mapped. At system initialization v, is set to 0, and
subsequently each time v, becomes equal to Vg p, it is
incremented by N. The increment is done after mapping, not
before.

reset: vo=v, p=0;
if

(Vo=Vzp)

Vo=Vo+N
f) Transfers from the Input Switch to Memory

Referring now to FIG. 12, the transfer of cells from the
input switch 100 to global data buffer 104 is performed in a
time division multiplex fashion. That is, consecutive cells
from a given multiport are directed to different memory
destination locations. At each time period (cell slot), the
input switch transfers to memory a single cell received from
each multi-function multiport (as available) into memory. At
a next time T+1 the input switch transfers again a single cell
from each multiport into memory. Successive entries from
the same input multiport are written to different memory
banks 105 in global data buffer 104.

Controller

Referring now to FIG. 13, controller 106 includes con-
troller memory 109, route look-up engine 110, input switch
interface 1300, and output switch interface 1302. Controller
106 receives a route look-up request from input switch 100
at the input switch interface 1300. In one embodiment of the
present invention a plurality of route look-up engines 110
are included in controller 106, each receiving look-up
requests in round-robin fashion so as to speed the routing
process. In one embodiment, controller memory 109 is a
four-bank static random access memory (SRAM) that
requires thirty two route look-up engines 110 to service at
full bandwidth. The matching of keys retrieved from a
packet in order to determine a best match route through the
router is described in greater detail in co-pending patent
application entitled “HIGH SPEED VARIABLE LENGTH
BEST MATCH LOOK-UP IN A SWITCHING DEVICE”,
filed on Dec. 16, 1996, by Fergusen et al., Ser. No. 08/767,
576, which is hereby expressly incorporated by reference.

The route look-up engine servicing the route look-up
request performs a best match look-up and outputs a noti-

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

US 6,493,347 B2

17

fication through output switch interface 1302 to output
switch 102. The notification includes a result which indi-
cates the multi-function multiport to be used in the transfer
of the packet to its destination.

Referring now to FIG. 14, the data structure associated
with the notification outputted by the controller 106 to the
output switch 102 is shown. Th data structure 1400 for the
notification includes a mask 1402, a next hop index pointer
1404, full address 1406, offsets 1408 and packet length
1410.

The mask field 1402 is used to indicate which multi-
function multiport connected to output switch 102 is to
transfer the packet. In one embodiment, the notification may
be sent to more than one multi-function multiport resulting
in the broadcast of the associated packet.

Associated with each multi-function multiport 150 is a
storage 310. The next hop index pointer points to a location
in storage 310. Storage 310 is used to store media header
information associated with a particular type of packet
transfer. Next hop addresses, media headers and storage 310
will be described in greater detail below in association with
the output section of multi-function multiport 150.

The full address 1406 indicates the starting address in the
global data buffer where the first cell in the packet is stored.
As was described above, offsets 1408 provide linking infor-
mation for retrieving cells or an indirect cell associated with
the packet. Packet length filed 1410 indicates the length of
the associated packet and may be used to determine if
indirect cells will have to be retrieved.

Output Switch

Referring now to FIG. 15a, output switch 102 includes a
controller interface 1500, one or more memory inputs 1502
(1502-0 through 1502-7, one for each memory bank), one or
more outputs 1504 (1504-0 through 1504-7, one for each
multi-function multiport), a result processor 1506 and an
output processor 1508. Output switch 102 performs four
functions: receive output results, process output results,
receive cells from memory and output cells to output ports.
a) Transfers from Memory to the Output Switch

Cells from memory are received at memory inputs 1502
and transferred to output processor 1508. Cells are trans-
ferred based on read requests received at the input switch
from multi-function multiports. The data structure associ-
ated with the cells transferred from global data buffer 104 to
output switch 102 is shown in FIG. 15b. Each cell 1510
includes an output port identifier 1512 and cell data 1514.

Output processor 1508 decodes the destination multi-
function multiport from the cell information received from
memory and transfers the cell data to the appropriate outputs
1502. At each cell slot, output switch 102 may receive a cell
for processing from each bank in global data buffer 104.
b) Transfers from the Output Switch to the Multi-function
Multiports

Output switch 102 receives notification from controller
106 on controller interface 1500. Result processor 1506
decodes the result (route) and determines which multi-
function multiport(s) 150 is (are) to receive the route data.
Based on mask 1402 in the notification, result processor
1506 transfers the notification to output processor 1508 for
transfer to each multi-function multiport 150 indicated. At
each cell slot, output processor 1508 provides (via outputs
1504) a route to each multi-function multiport 150.

The data structure associated with the data transferred
from output processor 1508 to multi-function multiports 150
is shown in FIG. 16. A cell 1600 includes a header 1602 and
data field 1604. The header 1602 includes memory bank
source information 1606 and route information 1608. The

10

15

20

25

30

35

40

45

50

55

60

65

18

memory bank source information includes a source identifier
for indicating which memory bank provided the cell in data
field 1604. Route information 1608 contains data from the
notification including a next hop index, packet length, full
address and offsets.

Output Section of a Multi-function Multiport

Referring now to FIGS. 17a and 17b each multi-function
multiport 150 includes an output switch interface 316, an
input switch interface 304 including read request queues
305, head and tail queue buffer 318, an output request
processor 306, an line output interface 308, storage device
(memory) 310, stream output buffers 312 and output for-
matter 314.

a) Notification Queues

A multi-function multiport 150 receives notification that a
packet is to be processed in the form of a notification cell
1600 (FIG. 16) received at the output switch interface 316.

Output request processor 306 processes notifications,
storing each in an appropriate location in head and tail queue
buffer 318 and servicing notification requests as they make
their way through the various priority queues in head and tail
queue buffer 318. The servicing of requests results in the
generation of a read request to input switch 100 associated
with the first address in memory where the packet
(associated with the particular notification) is stored.

Referring now to FIG. 17b, head and tail queue buffer 319
includes a plurality of notification queues Q 1700, where
Q=4*s, and where s is the number of active streams in the
multi-function multiport. Unlike the global data buffer, the
queues Q are implemented on a per-port basis. The queues
in a respective multi-function multiport store only those
notifications associated with streams to be outputted from
the respective port of the multi-function multiport. Each
queue is itself divided into a head region 1702, a tail region
1704 and a body region 1706. The head and tail region for
a queue are stored in the head and tail queue buffer 318.

The size of the portion of the head and tail queue buffer
dedicated to each stream is fixed at initialization time and is
proportional to the peak bandwidth of its stream. The
partitions between portions are “hard” in the sense that a
stream cannot use more than the memory allocated to it. The
partitions between queues associated with the same stream
are “soft”. The size of an individual queue is proportional to
the nominal bandwidth allocated to its queue. The body
region of the notification queue is stored in the notification
area 319 (FIG. 3a) of the memory section 290 of the
multi-function multiport 150. Each stream is assigned 4
queues (the body portions of the priority queues) in the
notification area 319 (FIG. 3a). The body region is sized to
be ¥ of the overall memory section.

Each queue associated with a given stream is serviced
according to a priority scheme. Notifications that are
received by the output request processor 306 are loaded into
an appropriate queue associated with a stream based on the
priority of the notification. Priority for notifications can be
set by an external source and may be included in the packet
received by the router. Alternatively, controller 106 (FIG.
3a) may set the priority depending on the amount of time
required to perform the route look-up or other criteria.

Once a queue 1700 has been identified based on the
priority information and stream ID, the output request pro-
cessor 306 loads the notification into the appropriate tail
queue 1704. Notifications are transferred between the
respective head, tail and body portions of a queue based on
available space by a queue manager (not shown). In one
embodiment, each notification is 16 bytes, and the notifica-
tion area 319 is sized to hold 64 bytes. Accordingly, for

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

US 6,493,347 B2

19

reasons of bandwidth efficiency, all reads and writes to the
notification area are done using 64-byte cells containing four
16-byte notifications each.

The head and tail of each queue is sized to store only a
small number of notifications, the bulk of queue storage
being provided by the notification area in the multi-function
multiport memory bank. As long as space is available
on-chip (on the multiport) to hold the notifications for a
queue, the notification area is completely bypassed. When
on-chip space runs out, the notification area acts as the large
“middle” of the queue, with a few notifications at the head
and tail being held on-chip.

While the size of the notification area will tend to limit the
numbers of dropped packets, occasionally a queue will
become full. Output request processor includes a drop
engine (not shown) for determining which entries in a
particular queue are to be dropped based on a predefined
algorithm. In one embodiment, the drop engine institutes a
programmable random early drop routine. The routine is
programmable in that the user can define one or more
parameters, random in that a random number generator is
used to determine whether a entry will be dropped. Early
refers dropping from the head of the queue.

The programmable random early drop routine may be
implemented in software and when executed performs the
following sequence of operations. The process begins by
calculating the amount of data stored in a particular queue.
This information is stored in the form of a fraction (or
percentage) of fullness. Thereafter, a drop criterion is deter-
mined based on the fraction of fullness. In one embodiment,
a table of drop criterion values ranging from zero to one is
mapped against fullness fractional values. The drop engine
then derives a random number from zero to one. The random
number may be generated by a random number generator or
other means as is known in the art. A comparison is made
between the random number generated and the drop crite-
rion value. Thereafter, the entry at the head of the particular
queue is dropped if the random number generated is larger
than the drop criterion. Alternatively, the drop engine could
avoid the drop if the random number generated is less than
the drop criterion. The drop engine operates on each queue
at a regular interval to assure that the queues do not overflow
and a orderly method of dropping packets is achieved if
required. This process is extremely helpful when transmit-
ting packets across the Internet.

b) Per Bank Notification Queues

Each stream includes four queues 1700 that are serviced
using a weighted round robin discipline. The weighting is
used to reflect the priority associated with a given queue. For
example, the four queues for a given stream may be serviced
in the following ratios: Q1 at 50%, Q2 at 25%, Q3 at 15%
and Q4 at 10%.

The multi-function multiport maintains four cell pointers
for each queue: start, end, head, and tail. In one embodiment,
each pointer is 23 bits long and can address the entire
memory associated with the multi-function multiport. The
start and end pointers mark the boundaries of the queue’s
region, while the head and tail pointers point to the next cell
(notification) to read and next cell o write respectively. The
head and tail pointers are restricted to align within the region
defined by the start and end pointers, and standard wrap-
around arithmetic is performed when incrementing these
pointers.

Given the description above, it should be clear that the
region for a queue can be as small as one cell and as large
as the entire memory bank. It is up to the software to
configure the pointers at initialization time to define the sizes

20

25

30

35

40

45

50

55

60

65

20

of the regions, and to ensure that regions are non-
overlapping with each other and with the memory allocated
to the global packet buffer.

Typically, the software is used to allocate memory to a
stream proportional to the stream’s bandwidth.

C) Read Request Generation

Output request processor 306 services the queues to
extract notifications from the head regions of queues 1700.
Output request processor generates a first read request based
on the full address received from output switch 102. There-
after subsequent read requests are generated for transmission
to the input switch based on the offset information provided
in the request (from cell 1600) or indirect cells (as will be
described below). Read requests include a stream identifier
and a full address. Read requests are sent by the output
request processor to an appropriate read request queue 305.
One read request queue 305 is provided for each bank of
memory.

If the packet length, as determined from the route infor-
mation provided with the cell 1600, is greater than five (5)
cells, then the output request processor first requests the
transfer (read from memory) of the first indirect cell asso-
ciated with the packet. This is accomplished by computing
the address of the indirect cell based on the full address and
the offsets provided in cell 1600. After the indirect cell
request is generated, the output request processor generates
read requests for the remaining cells in the packet based on
the full address and the offsets provided in cell 1600. Upon
receipt of a indirect cell from the output switch 102, output
request processor continues to generate read requests for the
remaining cells in the packet based on the offset information
contained within the indirect cell.

Subsequent indirect cells are retrieved in a similar fash-
ion. That is, at the time for reading the next indirect cell, the
address of the next indirect cell is computed based on the last
offset stored in the previous indirect cell. The timing of
retrieving the indirect cells is accomplished such that no
delays in the output stream are incurred. Each subsequent
indirect cell is retrieved prior to the end of the processing of
the prior indirect cell. In this way, once the output stream is
initialized, no buffering of data is required and no interrup-
tions due to the latency associated with the retrieval process
are experienced.

Output requests to an individual memory bank are pro-
cessed strictly in order. That is, the multi-function multiport
may track each request issued to a memory bank (through
the read request queues) and is assured that the data received
in response to a series of requests to the same memory bank
will be strictly delivered according to the sequence or
pattern in which they were issued. Output request processor
306 keeps track of requests generated for each memory bank
through the use of reply queues (not shown). The request
queue contains a stream number and a read address. When
a request is issued to memory, the entry is removed from the
request queue and the stream number portion is placed in an
associated reply queue. When a reply is received, the entry
at the head of the reply queue is removed and the reply is
sent to the stream number (in stream output buffer 312)
indicated by the stream number retrieved from the reply
queue.

As cells are received back at the multi-function multiport
150 (responsive to the read requests), they are stored in an
associated stream output buffer 312. Stream output buffer
312 includes a plurality of FIFOs, one for each stream. Each
cell received for a stream is placed in the streams associated
FIFO. For given packet, the multi-function multiport stores
a fixed number of cells (in the FIFO) required to provide a

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

US 6,493,347 B2

21

streamed output prior to initializing the output of the stream
to line output interface 308. In one embodiment of the
present invention, twelve cells are stored prior to beginning
output (stream data) from the output port. The selection of
the number of cells for storage in output buffer 312 is based
on the latency in the read process (number of clock cycles
between a read request from an multi-function multiport and
the arrival of the cell associated with the read request to the
output port).

Output formatter 314 receives the cells from output buffer
312 and couples the data with media header information
stored in memory 310. Each request (notification) received
from output switch 102 includes a next hop index. The next
hop index indicates the starting address in memory 310 of
the media header information associated with a given type of
transmission (derived from the destination of the packet).
Media header information stored in memory 310 may be
loaded upon initialization of the router and updated by the
controller as required. Output formatter 314 couples the cell
data returned from memory with the appropriate media
header to generate a proper packet for transfer out of router
20 on the line output interface 308.

Packet Routing Overview

Referring now to FIG. 18, in a method of routing packets
through a switch a packet is received at a multi-function
multiport (1800). The multi-function multiport divides the
packet into fixed length cells and transfers the cells to an
input switch (1802). Input switch removes the key informa-
tion from the first cell in a packet and stores it temporarily
in a key buffer (1804). Thereafter the input switch routes the
cells to memory banks resident in the multi-function mul-
tiports in a time division multiplexed manner (1806). The
input switch stores the first address in memory where the
first cell is stored and computes offsets for each additional
cell associated with the offset in memory for the next
contiguous memory bank into which the next cell is written
(1808). The input switch creates indirect cells to store
linking information for the packet if the packet length
exceeds five cells (1810). If the number of cells exceeds the
number of available offsets in an indirect cell, then the old
indirect cell is stored in memory and a new indirect cell is
created and loaded based on the offsets calculated for each
new cell received at the input switch.

When the packet (and its indirect cells if any) have been
stored in memory, then the key, full address of the first cell
and offset information is transferred as a look-up request to
a controller (1814). The controller performs a best match
look-up and generates a result of the look-up. The result
includes the destination port (multi-function multiport),
address, offset information and next hop index (1816). A
notification including the result is transferred to the output
switch for transfer to the appropriate multi-function multi-
port (1818).

Upon receipt of a notification, the multi-function multi-
port generates read requests a cell at a time to the input
switch for the data associated with the packet (1820). The
input switch issues the read requests in a time division
multiplexed fashion generating a single request to each
memory bank per cell slot (1822). When the memory bank
receives the request from the input switch, cell data and a
multi-function multiport identifier associated with the
request are transferred to the output switch (1824). Again, at
each cell slot, the output switch transfers a single cell to each
of the multi-function multiports. Upon receipt, the multi-
function multiport couples the cell data with media header
information and streams the data to the destination (1826).

20

25

30

35

40

45

50

55

60

65

22

System-Level View

Up to S streams, where S=s*b+1, may be in process in the
system concurrently for b active banks (+1 is for the stream
corresponding to the control channel (the control channel
stream is used to control configuration and operation of
elements in the router). Each stream consists of a sequence
of packets of arbitrary length L with arbitrary inter-packet
gaps. In one embodiment L is less than 64 KBytes. A stream
operates at a constant rate R Bytes/sec when it is receiving
a packet, and a rate of O Bytes/sec when it is not. Thus, there
are no “holes” during the reception of a packet. The value R
for a stream is determined at system initialization time and
Rmin and Rmax are system constants defined at design time.
In one embodiment, Rmin is approximately 4 MBytes/sec
and Rmax is approximately 320 MBytes/sec.

As described earlier, each packet is divided up into
64-byte cells before being written to memory. If all packets
are long compared to 64 bytes, then the rate of cells
generated by a stream is simply R/64 or O depending on
whether a packet is being received or not. Unfortunately,
because real life packets do not satisfy this assumption, the
instantaneous rate of cell generation depends on the lengths
of the packets being received, and this rate will typically be
larger than R/64 because of unoccupied bytes in cells.
Because of this dependency, the most we can say is that a
stream is either generating cells at some rate between R/64
and a small factor f times this rate, or it is not. The
worst-case value of f for IP is 128/65, which occurs for 65
Byte packets where one cell is full and the other carries a
single byte. For realistic network traffic, however, the aver-
age value of f should be around 1.2, with bursts of 40 Byte
packets causing f to go as high as 1.6 for short periods.

Let the cells generated by a given stream be numbered I,
I+1, 142, . . . etc. As was described above, cells are written
to sequentially increasing bank numbers I mod b. The virtual
address to which a particular cell is written is determined
largely by the cell’s arrival time into the system. For each
active memory bank, the system maintains a write pointer
that determines where the next cell directed to that bank will
be written. The pointers are kept in the input switch, and so
is the logic to switch incoming cells to the appropriate bank.
When the input switch receives a cell, it knows which bank
the cell should be written to by the cell’s ordinal number.
The input switch looks up the write pointer for the destina-
tion bank, writes the cell, and then increments the bank
pointer to point to the next location.

At system initialization, all bank pointers in the input
switch are set to 0, and the S streams in the system are
initialized with starting bank numbers such that approxi-
mately the same number of streams are pointed to each of
the b active banks. Although the starting bank numbers are
distributed evenly, they do not have to be. Distributing them
evenly simply makes the magnitude of the maximum nega-
tive offset a little smaller. FIG. 19 shows the starting
configuration for a system with b=8.

Over time, the bank pointers move as cells are written to
the buffer, but they move in a compact group because each
stream writes its packets to sequentially increasing bank
numbers mod b. The overall speed of the group is deter-
mined by the sums of the instantaneous bandwidths on all
the streams, and can vary from O cells/sec when no packets
are being received to a maximum of 400/64=6.25M cells/sec
when all interfaces are running at peak capacity.

ALTERNATIVE EMBODIMENTS

In an alternative embodiment, multi-function multiport
150 may be divided into separate functional blocks and
embodied in separate physical structures. For example, each

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

US 6,493,347 B2

23

multi-function multiport may be separated into an input port,
an output port and a memory. Memory may include both the
global data buffer and the notification queues. Alternatively,
memory may be divided further with the notification queues
physically manifested as a part of an output port.

The present invention has been described in terms of
specific embodiments, which are illustrative of the invention
and not to be construed as limiting. Other embodiments are
within the scope of the following claims.

What is claimed is:

1. A router for switching a data packet from a source to a
destination in a network, the router comprising:

an input port for receiving the data packet, the data packet
formatted in accordance with a first protocol;

a divider for dividing the data packet into uniform length
cells for temporary storage in the router, the divider
dividing the data packet without changing the format-
ting of the data packet;

a distributed memory comprising a plurality of physically
separated memory banks, each memory bank including
a global data area for storing a portion of the data
packet;

an input switch for streaming across the memory banks
uniform portions of the data packet such that consecu-
tive cells associated with the data packet are stored in
consecutive banks of the distributed memory;

a controller for determining packet routing through the
router;

an output switch for extracting in order the portions of the
data packet stored in the global data area of each
memory bank including reassembling the cells in
proper order to reconstruct the data packet formatted in
accordance with the first protocol and forwarding the
data packet to an appropriate output port; and

an output port for transferring the data packet to the
destination.

2. An apparatus for use in a router, the router for switching
data packets from a source to a destination in a network, the
router including one or more input ports for receiving data
packets, a divider for dividing the data packets into uniform
portions without changing the format of the data packet and
one or more output ports operable to forward the data
packets to other devices on the network based on routing
decisions made by the router, the apparatus comprising:

a distributed memory comprising a plurality of physically

separated memory banks;

a switch coupled to the divider operable to stream the
uniform portions to the memory banks where consecu-
tive cells associated with a data packet are stored in
consecutive memory banks;

each memory bank operable to store uniform portions of
a data packet received from the source and linking
information to allow for the extraction of the uniform
portions of the data packet from the plurality of
memory banks in proper order after a routing determi-
nation has been made by the routder such that the data
packet as originally formatted can be routed to another
device in the network.

3. The apparatus of claim 2 wherein the distributed
memory includes an output queue for storing a notification
indicative of the routing of the data packet through the
router.

4. The apparatus of claim 3 wherein the notification
includes linking information for retrieving at least a first cell
of the data packet from the distributed memory.

10

15

20

25

30

35

40

45

50

55

60

65

24

5. The apparatus of claim 4 wherein the notification
includes linking information for the first 5 cells of the data
packet.
6. The apparatus of claim 3 wherein the notification
includes an address for an indirect cell, the indirect cell
stored in the distributed memory and including linking
information for extracting cells in order from the distributed
memory.
7. The apparatus of claim 3 wherein each memory bank
includes a global data area for storing portions of data
packets and a notification area for storing notifications.
8. The apparatus of claim 7 wherein the notification area
is sized to be ¥ of a size of the global data area for a given
memory bank.
9. The apparatus of claim 8 further including a plurality of
multi-function multiports, each multi-function multiport
including one or more input ports and output ports for
receiving and transmitting data packets through the router.
10. The apparatus of claim 9 wherein a portion of the
distributed memory is located within each multi-function
multiport such that each multi-function multiport includes a
memory bank having a global data area and a notification
area.
11. The apparatus of claim 10 wherein the notification
area of a given multi-function multiport stores notifications
for data packets to be routed through an output port of the
given multi-function multiport.
12. The apparatus of claim 2 wherein memory reads and
writes to and from the distributed memory are sized to be 64
bytes.
13. The apparatus of claim 2 further including mapping
means for mapping from a virtual address space to a physical
address space associated with the distributed memory, the
mapping means for detecting aged packets in memory and
allowing for easy overwriting thereof such that garbage
collection of aged packets is not required.
14. A method of routing a data packet through a router in
a system transmitting data packets between a source and a
destination over a network including the router, the method
comprising:
receiving the data packet;
dividing the data packet into cells of a fixed size;
storing the cells in a distributed memory, the distributed
memory including two or more memory banks where
consecutive cells from the data packet are stored in
consecutive banks of the distributed memory; and

storing linking information in one bank of the memory for
linking cells of the data packet that are stored through-
out the distributed memory, the linking information
used for extracting the cells in order for transmission
from the router to the destination.

15. A method of storing a data packet in a router while a
look-up engine determines a proper path through the router
for the data packet in a system transmitting data packets
between a source and a destination over a network including
the router, the method comprising:

dividing the data packet into fixed length cells without

changing the formatting of the data packet;

storing the cells and linking information for reconstruct-

ing the data packet across a global data buffer, the
global data buffer including two or more memory banks
where the data packet is divided among the memory
banks including storing consecutive cells associated
with a data packet in consecutive memory banks of the
global data buffer; and

a switch for gathering cells associated with the data

packet from the global data buffer and reconstructing
the data packet prior to forwarding the packet to the
destination.

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

US 6,493,347 B2

25

16. A method for determining which data packets stored
in a router are to be passed through the router in a system
transmitting data packets between a source and a destination
over a network including the router, the method comprising:

determining a route through the router for a data packet,

the route including a notification indicating a starting
address in memory where the data packet is stored,
processing the notification including queuing the notifi-
cation with other notifications to be output on the same
output port of the router in a stream queue;
determining the fullness of the stream queue;
determining a drop criterion based in part on fullness of
the stream queue;

26

generating a random number;

comparing the random number and the drop criterion and
dropping the notification based upon results of the
comparison.

17. The method of claim 16 wherein the step of deter-
mining the fullness of the stream queue is performed when
the data packet reaches a head of the stream queue.

18. The method of claim 16 wherein the fullness is a
percentage and the random number generated is between
zero and one.

Copy provided by USPTO from the PIRS Image Database on 02-14-2003

	c:\p2mp\img\000015412000001\06493347\1\300_0001.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0002.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0003.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0004.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0005.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0006.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0007.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0008.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0009.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0010.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0011.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0012.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0013.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0014.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0015.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0016.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0017.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0018.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0019.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0020.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0021.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0022.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0023.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0024.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0025.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0026.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0027.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0028.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0029.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0030.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0031.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0032.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0033.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0034.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0035.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0036.tif
	c:\p2mp\img\000015412000001\06493347\1\300_0037.tif

