
1

HU Extension Assignment 11 E63 Big Data Analytics

Issued on: April 20, 2014 Due by Wodensday 11:25PM, April 30, 2014

Problem 1. An illustration of Bayes’ Theorem. Imagine that you have two baskets

with apples. The first basket has 3 red apples and 7 yellow apples. The second basket has

4 red apples and 2 yellow apples. If you have picked a red apple, what is the probability

that you picked it up from the first basket. NOTE: Solve this problem using pen and

paper and then provide a brief MS Word explanation about how you did it. You are not

asked to write any computer programs.

Problem 2. Please reproduce results for Mahout Recommender as described in lecture.

Once you extract recommendations for several users, please go into the ratings.csv file

and lower ratings for one of the movies recommended to one of the users. You can use Vi

to reduce several scores for a selected movie from 5 to 4 or 3. Examine whether change

of scores affects the results of the recommender.

Problem 3. The purpose of the following example is to demonstrate effectiveness of

Mahout Naïve Bayes classifier. Make sure that the Linux user running the following

command has HADOOP_HOME and MAHOUT_HOME environmental variables

defined. This example was verified on CentOS6.5 MRv1 VM with Mahout 0.9.

1. Download Spam Assassin corpus from

http://spamassassin.apache.org/publiccorpus . We will use that corpus both to

train the classifier and to test how well the classifier performs at detecting spam.

Create a new corpus directory and within it a spam-assassin directory.

2. Once you expand the downloaded archive with spam and ham emails, place

expanded files in corpus/spam-assassin/spam and corpus/spam-

assassin/easy-ham files respectively. Count the number of spam and the

number of ham files. Examine a few files in each directory. Those, as you can see

are real emails.

3. Next we want to create a training set of files containing both spam and ham

emails. You are welcome to work with the entire set of emails. In order to reduce

the execution time of the initial test runs, we recommend that you place only

some 400 ham emails and some 100 spam emails in the training set. Those two

sets of files should be placed in the directories:

a. corpus/spam-assassin/train/spam
b. corpus/spam-assassin/train/easy_ham

4. Subsequently, in HDFS, create directories:

a. train/spam

b. train/easy_ham

Transfer all files from the previous two Linux directories (starting with

corpus/spam-assassin) into respective directories in HDFS.

http://spamassassin.apache.org/publiccorpus

2

5. Next we need to transform all of those HDFS files into Hadoop sequence files.

Hadoop sequence file is a flat file consisting of binary key/value pairs. It is

extensively used in MapReduce as input/output format. It is also worth noting

that, internally, the temporary outputs of maps are stored using SequenceFile

objects. We will examine the file(s) once generated and see (theirs)its internal

structure. Transformation of files in HDFS directory train (please note that we

include both subdirectories spam and easy_ham) is accomplished using the

following command:

$ mahout seqdirectory -i train -o train_mahout -c UTF-8

Option –i points to the input directory; option –o to the output directory and –c

to the character set of the resulting files. Please issue command:

$ mahout seqdirectory –-help

and record the output. As you will see, Mahout’s seqdirectory program has a

bunch of sensible and useful options.

6. We are ready to examine the content of the output directory train_mahout.

Please report on how many files are there in that directory? Why is the number of

those files whatever it is?

7. Transfer the file(s) to Linux directory and examine them/it with Vi or some other

text processing tool. Can you tell us what are the keys and what the values we

spoke above in the context of Hadoop sequence files.

8. Please, also examine the sequence file(s) with Hadoop’s fs –text tool by

issuing command:

$ hadoop fs –text | head -500

The output will be very similar, yet somewhat different from the one you saw

when examining the local copy with Vi. Please explain how observed or utilized

key-value pairs preserve the information content of the original train directory.

9. Mahout classifier needs to transform our textual files (emails) into sparse vectors

in the multi-dimensional vector space of all words (terms). In class, we spoke on a

couple of occasions about how in natural language processing we need to remove

all stop words, stem different word forms and then assign to every text document

weight, i.e. coordinate in terms of so called Tf-Idf coefficients. Mahout classifier

programs will do all of that. Mahout also allows you to select which type of

distance in the above vector space to use when assessing similarity or proximity

of text documents (vector points). To create all of those linguistic artifacts we run

Mahout program seq2sparse, all on one line:

http://wiki.apache.org/hadoop/MapReduce

3

$ mahout seq2sparse -i train_mahout -o train_vectors -lnorm

-nv -wt tfidf

In the above statement we used the following options:

a. The -lnorm parameter which instructs the classifier to use the L_2 norm

(a fancy Mathematical name for Euclidian distance)

b. The -nv parameter is an optional parameter that instructs the classifier to

output vectors as NamedVectors

c. The -wt parameter instructs which weight function needs to be used. We

chose previously mentioned TfIdf weighing of documents. When we are at

it could you tell us what is the typical formula for TfIdf coeffcients.

d. Options –i and –o respectively specify input and output HDFS

directories.

10. Please, examine resulting HDFS directory train_vectors. Tell us what do you

see? Please, examine the contents of individual directories and files. Perhaps you

could tell us what is the meaning of individual files and what type of information

they contain.

11. Now that we have generated the weight vectors, we need to pass them to the

training algorithm. However, if we train the classifier against the whole set of

data, we will not be able to test the accuracy of the classifier. To avoid this, we

need to divide the vector files into two sets called the 80-20 split. This is a good

data-mining approach to divide the whole bunch of data into two sets: one for

training and one for testing the algorithm. A good dividing percentage is shown to

be 80 percent and 20 percent, meaning that the training data should be 80% of the

total while the testing data should be the remaining 20%. To split data, we use the

following command, all on one line:

$ mahout split -i train_vectors/tfidf-vectors

--trainingOutput train-vector-set

--testOutput test-vector-set --randomSelectionPct 40

--overwrite --sequenceFiles -xm sequential

Examine and report on the resulting HDFS directory and files.

12. As result of split command, we will have two new folders: train-vector-

set and test-vector-set containing the training and testing vectors.

Please invoke program split with –-help option and tell us what is the meaning

of options we are using.

13. Now, it is time to train Mahout Naïves Bayes algorithm on the training set of

vectors, and for that purpose we use Mahout program trainnb (all on one

line):

$ mahout trainnb -i train-vector-set -el -o model -li

labelindex -ow

4

Please, examine resulting folders and files. Not all of them are human readable.

Please, tell us as much as you can about their contents and purpose.

14. Once program trainnb is finished, we are ready to test it against the remaining

20% of the initial input vectors. We perform the test using Mahout program

testnb, invoking the following command, all on one line:

$ mahout testnb -i test-vector-set -m model -l labelindex\

-ow -o testing

Please, examine the result and please tell us what is the success rate with which

Mahout Naïve Bayes classifier identifies spam emails? What is the name of the

final output of testnb program?

NOTE: This rightly appears too contrived and too involved. However, once you get used

to all of those commands, you can place them in a single script and run them on a single

line. If you have experience with Mahout, you certainly know that all of this could be

done programmatically from a Java program, using Mahout Java class libraries. If you

find it easier to use Java libraries, you are welcome to do so.

Problem 4. Please, look into your Inbox and find a few, 4 or 5, junk emails or emails that

are or look like spam. Please use Mahout Naïve Bayes classifier to tell you whether those

emails are or are not spam.

Please, describe every step of your work and present all intermediate and final results in a

Word document. Please, copy past text version of your command. We cannot retype text

that is in JPG images. Please, always submit a copy of original, working scripts and class

files you used as separate files. Sometimes we need to run your code and retyping is to

costly. Please, do not provide complete outputs of processes such as Map Reduce, unless

you believe they contain essential information supporting your assertions. Please, submit

to the class drop box. For issues and comments visit the class Discussion Board or send

emails to cscie63@fas.harvard.edu, please.

../AppData/Roaming/Microsoft/Word/cscie185@fas.harvard.edu

