
1

HU Extension Assignment 10 E63 Big Data Analytics

Handed out: 04/13/2014 Due by 11:30PM on Saturday, 04/19/2014

Problem 1) Create a Debian Linux Virtual machine by downloading OS ISO file from

http://www.debian.org. Please use amd64 architecture. Install Oracle’s Java Development

Kit 1.7_xx. Please do not download Java8. Cassandra might or might not work with

Java8. Download Cassandra 2.0.6 from http://cassandra.apache.org and install. Verify

that you can start Cassandra and can successfully open cqlsh prompt. Create your own

keyspace, create a table with three “column families” and insert two rows into that table.

Demonstrate that you can query inserted rows.

Problem 2) Install a relatively recent Eclipse in your Debian VM. Download Cassandra

Java driver 2.0 from http://www.datastax.com. Downloaded file has some 6MB

and should be named like: cassandra-java-driver-2.0.0.tar.gz. Expand the

archive. You will see two cassandra-driver-….jar files. Also, in the subdirectory lib,

you will see several additional jar files. You will add all of those to the Build Path of

your Eclipse project. Next, create a Java Project in your Eclipse. Move attached class

SimpleClient into the project. Place attached log4j.properties file in the src

directory of your project. Add above mentioned jars to the Build Path of the project.

Make sure that Cassandra is started. Run your SimpleClient class as a Java

Application. Capture console output. It should basically say that you are running a single

machine Cassandra cluster on the host 127.0.0.1. Modify your log4j.properties to

stop so many DEBUG lines from being printed out. Capture all the steps, working code

and resulting console outputs. Submit modified log4j.properties file, as well.

Problem 3) Add attached class CQLClient to your Java project. As you can see this

class performs basic CQL operations on your Cassandara database. It opens a session to

Cassandra cluster, creates a new keyspace, creates new table, inserts and queries some

rows in that table. Change the name of the keyspace, table name and the column names.

In the insert statements, replace values appropriate for your table and columns. Run your

CQLClient class as a Java Application. Capture Eclipse console output. Submit

working code and console output. Next open your cqlsh prompt, switch to (use)

keystore your Java program created and demonstrate that you can select the values your

Java program inserted into Cassandra. Add Debian Linux and Cassandra to your Resume.

Descriptions of classes SimpleClient and CQLClient are added to the lecture notes

and modified lecture notes are uploaded to the class site.

Problem 4) Placing hard-coded values inside your CQL (SQL) statements, as we did in

the previous problem, is considered a bad programming practice. For all kind of reasons,

including application security, code reuse and application performance, you want to be

able to write generic CQL (SQL) statements which have placeholders for values and then

assign concrete values at the moment when you want to perform database operations. In

the class CQLClient we executed such hard coded (CQL) SQL statements using method

execute() on the Session object. As suggested, a better way is to create objects of

PreparedStatement type. Those objects will contain CQL statements and bind values

http://www.debian.org/
http://cassandra.apache.org/
http://www.datastax.com/

2

(place-holders). Prepared statements will only need to be parsed once by Cassandra

cluster. We will bind values to the variables and execute the bound statements when we

want to read or write data from or to Cassandra’s tables.

In your project, create a new class called PerparedClient by copying the content of

CQLClient. Next, modify loadData() method . Add code to your client for:

 creating a prepared statement

 creating a bound statement from the prepared statement and binding values to its

variables

 executing the bound statement to insert data

Add code to prepare an INSERT statement. You get a prepared statement by calling the

prepare method on your session.

PreparedStatement statement = getSession().prepare(

 "INSERT INTO simplex.songs " +

 "(id, title, album, artist) " +

 "VALUES (?, ?, ?, ?);");

Add code to bind values to the prepared statement's variables and then execute the

statement. You create a bound statement by calling its constructor and passing in the

prepared statement. Use the bind method to bind values and execute the bound statement

on your session.

BoundStatement boundStatement = new

BoundStatement(statement);

getSession().execute(boundStatement.bind(

 UUID.fromString("756716f7-2e54-4715-9f00-

91dcbea6cf50"),

 "La Petite Tonkinoise'",

 "Bye Bye Blackbird'",

 "Joséphine Baker"));

Note that you cannot pass in string representations of UUIDs or sets as you did in the

previous loadData() method.

Add code to create a new bound statement for inserting data into the

simplex.playlists table.
statement = getSession().prepare(

 "INSERT INTO simplex.playlists " +

 "(id, song_id, title, album, artist) " +

 "VALUES (?, ?, ?, ?, ?);");

boundStatement = new BoundStatement(statement);

getSession().execute(boundStatement.bind(

 UUID.fromString("2cc9ccb7-6221-4ccb-8387-f22b6a1b354d"),

 UUID.fromString("756716f7-2e54-4715-9f00-91dcbea6cf50"),

 "La Petite Tonkinoise",

 "Bye Bye Blackbird",

3

 "Joséphine Baker"));

Review the main() method of your class.

public static void main(String[] args) {

 PreparedClient client = new PreparedClient();

 client.connect("127.0.0.1");

 client.createSchema();

 client.loadData();

 client.querySchema();

 client.close();

Of course, in the above, replace the keyspace name, table names and column

names with names you used in your version of CQLClient class. Before running this

new class go to the cqlsh prompt and drop your existing tables and the existing

keyspace. Otherwise, you will get an error telling you that a keyspace (tables) with

existing name(s) already exist.

Submit the working code and all console outputs.

As usual, please capture all the steps of your implementation, with comments indicating

what is it you are accomplishing with every step, in an MS Word document. PLEASE

capture code as text files and insert into the Word document. ALWAYS provide separate

copies of entire scripts or Java classes. We might want to run your code and we do not

have time to retype the code by reading it from your screenshots.

Please place all files you want to submit in a folder named: HW10. Compress that folder

into an archive named E63_LastNameFirstNameHW10. ZIP. Upload the archive to the

course drop box on the class web site. Please send comments and questions to

cscie63@fas.harvard.edu

mailto:cscie63@fas.harvard.edu

