
1

HU Extension School E-63 Big Data Analytics

 Assignment 06

Handed out: 03/08/2014 Due by 11:59PM on Friday, 03/14/2014

Problem 1) Attached file “Using String Tokenizer in Java.docx” contains a small tutorial

article on properties of jav.util.StringTokenizer class. You should also consult

Java docs for that class. You can find those at:

http://docs.oracle.com/javase/6/docs/api/java/util/StringTokenizer.html

Both from the article and from the class description you realize that the String Tokenizer

used in our class example WordCount.java, file is attached, could do more. If not told

otherwise, it breaks strings into tokens on empty spaces. That left a lot of punctuations,

parenthesis and the like on the result of our wordcount.jar MapReduce program.

Modify WordCount.java class so that when you run wordcount.jar on all-bible text,

you get the list of words and without punctuations and other non-word characters.

When developing map() method, please extract the map() method into a standalone

Java class which has its own main() method and which you can run on the command

prompt. In that standalone class, instead of writing to the contex object, use

System.out.println to write to the console. When you are sure that your map()

method does what you expect it to do, only then place it back into the class

WordCount.java. If you are new to Java, use method replace() of class

java.lang.String to remove undesired characters. If you are a Java pro, please use

regular expressions.

Similarly, modify the reduce() method, so that it emits only those words which appear

less than 1000 times. Let reduce() also get rid of verse counts in the form 01:004:010.

Run your new version of wordcount.jar on your favorite VM. Use the attached all-

bible.txt file for your test.

Problem 2) Demonstrate that your modified WordCount.java will produce the same

result whether you compile it and jar it on your PC (MAC) or on your Linux VM.

Problem 3) The result of wordcount.jar MapReduce job is an (unordered) list of

words and their frequencies, i.e. zeal 13, youths 1, etc. Write a simple MapReduce

program that would take the output file of your WordCount program and flip the words

and frequencies and produce a list of output frequencies vs. words, like: 13 zeal, 1

youths, etc. Could you make that output ordered so that it starts with the lowest

ferequency and ends with the highest.

Problem 4) On a slide towards the end of the lecture notes we made a claim that the

original WordCount.java was too complex and that we could have achieved the same

result using built in Mappers and Reducers in the manner contained in class

WordCount2.java.

http://docs.oracle.com/javase/6/docs/api/java/util/StringTokenizer.html

2

package org.apache.hadoop.examples;

public class WordCount2 {

public static void main(String[] args) {

 JobClient client = new JobClient();

 JobConf conf = new JobConf(WordCount2.class);

 FileInputFormat.addInputPath(conf, new Path(args[0]));

 FileOutputFormat.setOutputPath(conf, new Path(args[1]));

 conf.setOutputKeyClass(Text.class);

 conf.setOutputValueClass(LongWritable.class);

 conf.setMapperClass(TokenCountMapper.class);

 conf.setCombinerClass(LongSumReducer.class);

 conf.setReducerClass(LongSumReducer.class);

 client.setConf(conf);

 try {

 JobClient.runJob(conf);

 } catch (Exception e) { e.printStackTrace(); }

}

Please, make the above class work and verify the claim.

Problem 5) Hadoop’s HDFS API allows you to manipulate files and date

programmatically. When running your MapReduce jobs Hadoop prefers to work with one

file rather that many. For whatever reasons, there appears to be no utility that merges

files. The attached simple utility class PutMerger.java attempts to make up for that

deficiency. Please try to fix the class if anything is wrong with it and then examine

whether it could truly merge two files into one. Please note, you should run the class

using hadoop jar command and the standard hadoop classpath command.

Capture all steps of your implementation with comments indicating what is it you are

accomplishing with every step in an MS Word document.

Please place all files you want to submit in a folder named: HW06. Compress that folder

into an archive named E63_LastNameFirstNameHW06. ZIP. Upload the archive to the

course drop box on the class web site. Please send comments and questions to

cscie63@fas.harvard.edu

mailto:cscie185@fas.harvard.edu

