
HU Extension Assignment 07 E63 Big Data Analytics

Handed out: 03/15/2014 Due by 11:39PM on Friday, 03/28/2014

Problem 1) Towards the end of the last lecture we described how to create one

MapReduce job previously implemented in two jobs represented by classes

InverterCounter.java and CitationHistogram.java and produce a “chain” of

MapReduce jobs in a single class ChainedHistogram.java. Please follow the

description and demonstrate that you can truly “chain” two previous jobs and execute

them under one java class ChainedHistogram.java. The main objective is to avoid

manually running two jobs. At the end of processing remove HDFS directory where you

kept the intermediate results.

You can delete the intermediate data generated at each step of the chain or at the time

when they are not needed any more, at the end. You can perform the file deletion with a

command like this

FileSystem.delete(Path f, boolean recursive);

You can control input and output file locations (paths) programmatically using Path class.

Path in = new Path("HDFSDirectory/filename");
Path first_out = new Path("hdfs_directory”);

Demonstrate that your chained MapReduce job for calculating Citation Histogram

starting with patents citation file cite75_99.txt will produce the same result as the

sequence of two jobs used in class. Implement class ChainedHistogram.java in “old”

API.

Problem 2) Implement class ChainedHistogram.java in new API. Demonstrate that

is works and produces identical results as the original. Provide working code and snippets

of your results and console outputs.

Problem 3) Imagine that you are a Linux person and you have not a single machine with

an Excel. Your boss is adamant and wants a graphical histogram of the number of patents

cited (no_patents_cited) given number of times as determined by the attached

CitationHistogram.java. Write a new Hadoop program that will print a true

(graphical) histogram of 4log10(no_patents_cited + 1) values using a string of

asterixes (*) indicating the value. Varibale no_patents_cited is showing how many

patents were cited once, twice, three-times and so on. You histogram will look

approximately like this:

1-20 *********************************

21-40 ******************************

41-60 ********************

. . . .

760-780 *

Use buckes of size 20. log10(1) = 0, so if we try to present only

log10(no_patents_cited), the very bottom of the tail would get lost in this

particular histogram, since we cannot paint zero asterixes. To preserve the tail we added

number 1 to the no_patents_cited in the expression 4log10(no_patents_cited +

1). By doing this, we introduce a tiny error for most of the histogram, but preserver the

visibility of the tail. Number 4 is added for a similar reason. Namely, log10(2) =

0.301. Since you cannot paint 1/3 of an asterix, we are multiplying the logarithm by 4 to

scale it out. That would produce a full point on the graph for the counts on the very

bottom of the tail. You should try presenting the histogram without those embelishments,

as well. Give your boss the one that looks better. Appearance matters.

Problem 4) Consider the following definite integral ∫
 ⁄

 . This integral can be

calculated exactly, and its value is – Many other integrals cannot be

calculated exactly and we resort to approximate techniques such as the Riemann sums.

Riemann sum for an integral with lower and upper boundaries and of a function

 is defined as:

∑

Here, the interval is divided into subintervals of width is the

difference between two adjacent values of x, . Also and

 . Use MapReduce to calculate the Riemann sum with the above

definite integral from 1 to 10 of the function ⁄ .

Problem 5) Extend the technique of previous problem to calculate the Riemann sum for

the integral

∬

Run the calculation on a 100x100 grid and then 1,000 X 1,000 grid.

Submission Note: Please capture all the steps of your implementation in an MS Word

document. Please add comments indicating what is accomplished with every step. Please

submit a copy of working code.

Please place all files you want to submit in a folder named: HW07. Compress that folder

into an archive named E63_LastNameFirstNameHW07. ZIP. Upload the archive to the

course drop box on the class web site. Please send comments and questions to

cscie63@fas.harvard.edu

mailto:cscie185@fas.harvard.edu

