HU Extension Assignment 10 E63 Big Data Analytics
Handed out: 04/13/2014 Due by 11:30PM on Saturday, 04/19/2014

Problem 1) Create a Debian Linux Virtual machine by downloading OS ISO file from
http://www.debian.org. Please use amd64 architecture. Install Oracle’s Java Development
Kit 1.7_xx. Please do not download Java8. Cassandra might or might not work with
Java8. Download Cassandra 2.0.6 from http://cassandra.apache.org and install. Verify
that you can start Cassandra and can successfully open cqglsh prompt. Create your own
keyspace, create a table with three “column families” and insert two rows into that table.
Demonstrate that you can query inserted rows.

Problem 2) Install a relatively recent Eclipse in your Debian VM. Download Cassandra
Java driver 2.0 from http://www.datastax.com. Downloaded file has some 6MB
and should be named like: cassandra-java-driver-2.0.0.tar.gz. Expand the
archive. You will see two cassandra-driver-...jar files. Also, in the subdirectory 1ib,
you will see several additional ;ar files. You will add all of those to the Build Path of
your Eclipse project. Next, create a Java Project in your Eclipse. Move attached class
SimpleClient into the project. Place attached 10g47.properties fileinthe src
directory of your project. Add above mentioned jars to the Build Path of the project.
Make sure that Cassandra is started. Run your simpleClient class as a Java
Application. Capture console output. It should basically say that you are running a single
machine Cassandra cluster on the host 127.0.0.1. Modify your 1og47 .properties to
stop so many DEBUG lines from being printed out. Capture all the steps, working code
and resulting console outputs. Submit modified 10g47.properties file, as well.

Problem 3) Add attached class corclient to your Java project. As you can see this
class performs basic CQL operations on your Cassandara database. It opens a session to
Cassandra cluster, creates a new keyspace, creates new table, inserts and queries some
rows in that table. Change the name of the keyspace, table name and the column names.
In the insert statements, replace values appropriate for your table and columns. Run your
coLclient class as aJava Application. Capture Eclipse console output. Submit
working code and console output. Next open your cqlsh prompt, switch to (use)
keystore your Java program created and demonstrate that you can select the values your
Java program inserted into Cassandra. Add Debian Linux and Cassandra to your Resume.
Descriptions of classes simpleClient and cQLClient are added to the lecture notes
and modified lecture notes are uploaded to the class site.

Problem 4) Placing hard-coded values inside your CQL (SQL) statements, as we did in
the previous problem, is considered a bad programming practice. For all kind of reasons,
including application security, code reuse and application performance, you want to be
able to write generic CQL (SQL) statements which have placeholders for values and then
assign concrete values at the moment when you want to perform database operations. In
the class coL.Cclient we executed such hard coded (CQL) SQL statements using method
execute () 0onthe session object. As suggested, a better way is to create objects of
PreparedStatement type. Those objects will contain CQL statements and bind values


http://www.debian.org/
http://cassandra.apache.org/
http://www.datastax.com/

(place-holders). Prepared statements will only need to be parsed once by Cassandra
cluster. We will bind values to the variables and execute the bound statements when we
want to read or write data from or to Cassandra’s tables.

In your project, create a new class called perparedClient by copying the content of
CQLClient. Next, modify loadData () method . Add code to your client for:
e creating a prepared statement
e creating a bound statement from the prepared statement and binding values to its
variables
e executing the bound statement to insert data

Add code to prepare an INSERT statement. You get a prepared statement by calling the
prepare method on your session.

PreparedStatement statement = getSession () .prepare (
"INSERT INTO simplex.songs " +
"(id, title, album, artist) " +

"VALUES (2, 2, 2, ?2);");

Add code to bind values to the prepared statement's variables and then execute the
statement. You create a bound statement by calling its constructor and passing in the
prepared statement. Use the bind method to bind values and execute the bound statement
on your session.

BoundStatement boundStatement = new
BoundStatement (statement) ;
getSession () .execute (boundStatement.bind(
UUID.fromString ("756716f7-2e54-4715-9£00-
91dcbeabct50"),
"La Petite Tonkinoise'",
"Bye Bye Blackbird'",
"Joséphine Baker" ) );

Note that you cannot pass in string representations of UUIDs or sets as you did in the
previous loadData () method.

Add code to create a new bound statement for inserting data into the
simplex.playlists table.

statement = getSession () .prepare (
"INSERT INTO simplex.playlists " +
"(id, song id, title, album, artist) " +
"VALUES (2?2, 2, 2, 2, 2):");

boundStatement = new BoundStatement (statement);

getSession () .execute (boundStatement.bind(
UUID. fromString ("2cc9ccb7-6221-4ccb-8387-f22boalb354d"),
UUID. fromString ("756716f7-2e54-4715-9£f00-91dcbeabcf50"),
"La Petite Tonkinoise",
"Bye Bye Blackbird",



"Joséphine Baker") );

Review the main () method of your class.

public static void main(String[] args) {
PreparedClient client = new PreparedClient();
client.connect ("127.0.0.1");
client.createSchema () ;
client.loadData() ;
client.querySchema () ;
client.close () ;

Of course, in the above, replace the keyspace name, table names and column
names With names you used in your version of corclient class. Before running this
new class go to the cglsh prompt and drop your existing tables and the existing
keyspace. Otherwise, you will get an error telling you that a keyspace (tables) with
existing name(s) already exist.

Submit the working code and all console outputs.

As usual, please capture all the steps of your implementation, with comments indicating
what is it you are accomplishing with every step, in an MS Word document. PLEASE
capture code as text files and insert into the Word document. ALWAYS provide separate
copies of entire scripts or Java classes. We might want to run your code and we do not
have time to retype the code by reading it from your screenshots.

Please place all files you want to submit in a folder named: HW10. Compress that folder
into an archive named E63_LastNameFirstNameHW10. ZIP. Upload the archive to the
course drop box on the class web site. Please send comments and questions to
cscie63@fas.harvard.edu



mailto:cscie63@fas.harvard.edu

