M Trenbl ay/ A. Wl fe Handout #6
Aut umm 2001 EE282

MIPS-Lite Verilog Model

EE282 Programming Assignment #1
Due: 18 October, 2001

1.0 Overview

The purpose of this assignment is to familiarize you with Verilog, the MIPS-Lite instruction set architecture, and the
MIPS-Lite model. You will be given several test programs and a Verilog model of a MIPS—-Lite processor, into which
several bugs have been introduced. The first part of the assignment is to fix several (less than 10) bugs in the Verilog
model so that the test programs run correctly. The second part of the assignment is to modify the Verilog model so that
instructions execute only the stages that they require. Specifically, Branch and Jump instructions should complete in 3
cycles; and, ALU, Store and Jumpé&Link instructions should complete in 4 cycles.

In general, since NOPs can be implemented in a variety of ways on real machines. you should not explicitly check for
NOPs and instead treat them as normal instructions. For example, a NOP is typically represented in MIPS-Lite as a sl |
ro, r0, 0. You should treat this as an ALU instruction which completes in 4 cycles. DO NOT remove the writeback
stage for writes tor 0.

Make sure to check the FAQs in the class homepage regularly for extra information. The assignment is to be done in
groups of two or three people. If you have trouble getting the Verilog simulator to work, see one of the TAs.

2.0 What to turn in

Rather than physically hand in a hardcopy of your modified Verilog model, you will be asked to electronically submit
your code and a README file. Exact details on how to electronically submit your assignment will be given to you later.
The README file should contain a brief description of bug fixes and modifications that you made to the Verilog model.

3.0 Details

3.1 Setup

Before doing anything else, add sour ce /usr/ cl ass/ ee282/ set up to your .login file. You need to either relogin or
execute "source ~/.login" to activate changes made to .login file.

The files needed for this programming assignment are located in / usr/ cl ass/ ee282/ pr oj 1.
In this directory there are two subdirectories: t est code, which contains sample test programs and veri | og, which

contains the MIPS—Lite verilog model.

Create your own directory and copy all of the files and the directory structure into it by typing
cp —-r /usr/class/ee282/proj1 .

3.2Compiling Test Programs

Log onto one of the Sun machines. Go to testcode directory under projl that you have created. In this directory there are
several sample test programs as well as two scripts which compile the test programs for you.

3.2.1 Compiling MIPS assembly test programs

To compile a MIPS assembly program like add.s, type conpile282 add.s from the testcode directory. The
compile282 script will generate the following files:

add. di s — the disassembled object code produced by the assembler
add. dat a — the user program data_segment used by the verilog model
add. t ext — the user program text_segment used by the verilog model

Finally, run "useprogram add" to copy the data and text files into the verilog directory.

Remember to put a jr r31 instruction at the end of your assembly program so that the simulation will terminate
correctly. When in doubt, follow the examples provided in the testcode directory.

It is currently not possible to compile "C" files using compile282. We will let you know if we are able to add this feature.
However, the files obtained on compiling bubble.c (hamely bubble.dis, bubble.data and bubble.text) are available in the testcode
directory.

3.3 Running the verilog MIPS—Light model

Verilog is licensed to run on only some of the elaines in Sweet Hall. Since someone else will often be sitting in front of
the machines running verilog, you may have to run verilog remotely. To do this type

xhost +
on your current machine, then rlogin to an elaine that runs verilog and in the terminal window type

setenv DI SPLAY <your machi ne>: 0.0

To run the verilog model, change to the verilog directory and type
verilog —-f nmaster
This will compile all of the verilog source files for the MIPS-Light model. There are also three command line arguments
which allow you to use other verilog features:
+waves — use the graphical waves display
+regs - use the graphical register display
+out put — dump the final contents of memory to a file called memory.core
You can use any combination of these options. Try using all three!
verilog —-f master +waves +regs +out put

Once verilog has started up, type . <return> ; this will run the most recently compiled program. By clicking on the
buttons of the graphical register display, it is possible to step through the execution of the program. You can see what is
happening during every cycle and look at the values in all the registers. To exit verilog, type <Ctrl >D

4.0 MIPS-Light Debugging Utilities

For this assignment we have added several debugging utilities to the verilog model. These are commands that can be
typed at the verilog prompt to enable features or print information to the screen. The following utilities are provided.

Name Description

"hel p Help. Prints this list of utility descriptions

" por Power—On Reset

'ss Toggles single step

it Toggles instruction stream trace

"waves Start the waves display

'regs Start the register display

" out put Dumps memory to memory.core

"rfd Dumps the register file

"break = #; Setsa breakpoint in the code

"start = #; Sets the start address for 'dismem and 'dumpmem
'num = #; Sets the number of words to dump for dismem and 'dumpmem
" di smem Disassembles 'num’ words starting at address “start’
" dunprrem Dumps 'num’ words starting at address “start’

When you want to rerun a program type ' por at the verilog command line. This will reinitialize memory and restart the
program.

To single step through cycles, type’ ss. To turn single stepping off, type ' Ss again.’ i t toggles the instruction trace on
and off similarly to the ' ss command.

The " waves, ' regs, and ' out put perform the same function as the +waves, +r egs, and +out put options except
that they may be called after verilog is already running.

With the * br eak command you can set breakpoints in the code. That is if you want the program to stop when it reaches
the instruction at 0x100, then type ’ break = ' h100; at the verilog prompt before running the program.

With the last four commands, you can also dump any portion of memory. Say for example you wanted to dump the

array in bubble which starts at location 0x50. You would type the following sequence:
"start = ’h50;

‘num = 6;

" dunmpnem

This will dump six words starting at location 0x50. If you use the * di smemroutine, it will also disassemble memory.

If you ever forget one of the routines, simply type ' hel p at the verilog command line.

5.0 MIPS-Light Instruction Set Summary

The MIPS-Light ISA is a stripped down version of the MIPS R2000 ISA which is very close to the DLX ISA that is
described in the textbook. The main difference between MIPS—Light ISA and DLX ISA concerns the branch instructions.
MIPS-Light allows branches that have equal and not—equal comparisons between any two registers. When one of the
registers is R0, the branch instruction is equivalent to a BEQZ or a BNEZ instruction in DLX.

5.0.1 Instruction Formats

[op [rs [nt | immedate |

I's rt

is a 6-bit operation cod
is a 5-bit source register specifier
is a 5-bit target (source/destination)
reqister or branch condition

is a 16-bit immediate, branch dis—
placement or address displacement

is a 26-bit jump target address

is a 5-bit destination register specifier
is a 5-bit shift amount
is a 6--hit function field

In addition to the standard R2000 formats shown above, the MIPS-lite instruction set also has an additional format for
the BLTZ and BGEZ instructions.

Bit: 31 25 20 15
Field: REG MM rs sub of f set

5.0.2 Load and Store Instructions

Instruction Format and Description

Load Word LW i offset{base)

Sign-extend 16-bit offset and add to contents of register base to form address.

Load contents of addressed word into register rt.

Store Word

SW n offset(base)

Sign-extend 16-bit offset and add to contents of register base to form address.
Store the contents of register rf at addressed location.

5.0.3 ALU Instructions

instruction

Format and Description

ADD Immediate

ADDI rt,rs.immediate

Add 16-bit sign-extended immaediate to register rs and place the 32-bit result
in register rt. Trap on 2's-complement overflow,

ADD Immediate
Unsigned

ADDIU rt,rs,immediate

Add-16-bit sign-extended immediate to register rs and place the 32-bit result
in register . Do not trap on overflow.

Seton Less Than
Immediate

SLTI nrs,immediate

Compare 16-bit sign-extended immediate with register s as signed 32-bit
integers. Result = 1 if rsis less than immediate; otherwise result = 0. Place
result in register .

Set on Less Than
Immediate Unsigned

SLTIU i, rs,immediate

Compare 16-bit sign-extended immediate with register rs as unsigned 32-bit
integers. Result = 1 if rs is less than immediate; otherwise result = 0. Place
result in register rt.

AND Immediate

ANDI rt,rs,immediate
Zero-extend 16-bit immediate, AND with contents of register rs and place
the result in register rt.

OR Immediate

ORI rt,rs,immediate

Zero-extend 16-bit immediate, OR with contents of register rs and place
the result in register rt,

Exclusive OR XOR! d,m.!mmediafe

Immediate Zero-extend 16-bit immediate, exclusive OR with contents of register rs and
place the result in register rf.

Load Upper LUI rtimmediate

Immediate

Shift 16-bit immediate left 16 bits. Set least significant 16 bits of word to
zeros. Store the result in register rt.

instruction

Format and Description

Shift Left
Logical

SLL rd.rtsa

Shift the contents of reg ster i left by sa bits, inserting zeros into the low
order bits. Place the 32-bit result in register rd.

Shift Right
Logical

SAL rd,risa

Shift the contents of register rrriqht by sabits, inserting zeros into the high
order bits. Place the 32-bit result in register rd.

Shift Right
Arithmetic

SRA rdrisa

Shift the contents of register rt r':?ht by sa bits, sign-extending the high
order bits. Place the 32-bit result in register rd.

Shift Left
Logical
Variable

SLLV rd,rirs

Shift the contents of register rf left. The low order 5 bits of register rs specify
the number ot bits 1o shift left; insert zeros into the low order bits of it and
place the 32-bit result in register rd.

Shift Right
Logical
Variable

SRLV rd,r,rs

Shift the contents of re%ister rt right. The low order 5 bits of register rs specify
the number of bits 1o shift right; insert zeros into the high order bits of rf and
place the 32-bit result in register rd.

Shift Right
Arithmetic
Variable

SRAV rdrirs

Shift the contents of register rt right. The low order 5 bits of register rs specify
the number of bits to shift right; sign-extend the high order bits of rfand
place the 32-bit result in register rd.

Subtract Unsigned

SUBU rd,rs,rt

Subtract contents of registers 1t from rs and place the 32-bit result
in register rd. Do not trap on overflow.

Set on Less Than

SLT rdrs,nt
Compare contents of register 7t to register rs as sighed 32-bit
integers. Result = 1 if rsis less than rt; otherwise result = 0.

Seton Less Than

SLTU rdrs,rt
Compare contents of register rtto register rs as unsigned 32-bit

Unsigned integers. Result = 1 if rsis less than r1; otherwise result = 0.
AND AND rd,rs,rt
Bitwise AND the contents of registers rs and rf, and place the result in register rd.
OR OR rd,rs,rt
Bitwise OR the contents of registers rs and ri, and place the result in register rd.
. XOR rd.rs,nt
Exclusive OR - . : .
Bitwise exclusive OR the contents of registers rs and 1, and place the result in
register rd.
NOR NOR rd,rs,rt

Bitwise NOR the contents of registers rs and rt, and place the result in register rd.

5.0.4 Jump and Branch Instructions

Note: correct format is JALR rd, rs.

Instruction

Format and Description

Branch on Equal

BEQ rs,rl,offset =
Branch to target address if register rs is equal to register rt.

Branch on Not
Equal

BNE rs,rt,offset
Branch to target address if register rs is not equal to register rt.

or Equal Zero

Branch on Less than

BLEZ rs,offset
Branch to target address if register rs is less than or equal to zero.

Branch on Greater
Than Zero

BGTZ rs,offset
Branch to target address if register rs is greater than zero.

Branch on Less
Than Zero

[BEGIMM[v |

Branch to target address if register rs is less than zero.

BLTZ rs,offset

Branch on Greater
than or Equal Zero

BGEZ rs,offset
Branch to target address if register rs Is greater than or equal to zero.

Branch on Less

Than Zero And Link

BLTZAL rs,offset

Place address of instruction following the delay slot in register r37 (Link
register). Branch to target address if register rs is less than zero.

Branch on Greater
than or Equal Zero

BGEZAL rs,offset
the delay slot in register r37 (Link

Jump And Link
Register

And Link f:g%e'ie?ﬁdgrsasng:‘l E?Dsirau;gté?naéﬂ:g:érﬁ? register rs is greater than or
aqual 1o zero.

Jump Shift the 26-bit target address left two bits, combine with high order four bits of the PC,

and jump to the address with a 1-instruction delay.
. JAL target

Jump And Link | g6t the 26-bit target address left two bits, combine with high order four bits of the PC,
and jump to the address with a 1-instruction delay. Place the address of the
instruction following the delay slot in r37 (Link register).

Instruction Format and Description fop rd | salfunctiol

Jump Register | /A7
Jump to the address contained in register rs, with a 1-instruction delay.
JALR rs, rd

Jump to the address contained in register rs, with a 1-instruction delay. Place
the address of the instruction following the delay slot in register rd.

